Product Selection Handbook

INTERNATIONAL • ISSUE NO. 14

Autor Partie

DAVEY WATER PRODUCTS

We're now Davey Water Products!

We believe Davey Water Products better reflects our total product range and business focus.

Davey Water Products manufactures and distributes a comprehensive range of water transfer, conservation and filtration products which have earned their stripes throughout the world over the past seventy years.

Our export markets now number more than 60 separate countries where Davey Water Products match or exceed the world's best and achieve results in some of the toughest environmental and climatic conditions on the globe.

Over the past year Davey Water Products has made significant business acquisitions which add important new opportunities as well as rounding out our product range.

The business acquisitions include Spa-Quip, the New Zealand based manufacturer of spa pool products, which complements the range of Davey swimming pool and spa bath products.

Quite recently we have purchased Contamination Control, another New Zealand based company, whose range of water treatment products for domestic, rural, industrial and commercial water supply applications holds a dominant position in that market.

We have also maintained our significant commitment to research and development which has created innovative new products servicing specific and emerging market opportunities.

Many of these products have received multiple awards for innovation and product excellence and have directly led to our recent induction into the Manufacturing Hall of Fame for the State of Victoria.

Davey Water Products is a wholly owned subsidiary of GUD Holdings, a 'Top 200' Australian public company whose shares are listed on the Australian Stock Exchange.

Now more than ever "Depend on Davey Water Products" reflects a business culture of leadership, innovation, quality products and an accredited agent and reseller network committed to meeting the best expectations of our customers.

CONTENTS

HOME PRESSURE SYSTEMS	4
PRESSURE TANKS	9
WATER FILTRATION & TREATMENT	10
FARM AND COMMERCIAL SYSTEMS Shallow Well Deep Well	12 12 14
RAINWATER HARVESTING	16
ELECTRIC TRANSFER PUMPS	17
PERIPHERAL TURBINE & POND PUMPS	20
ENGINE DRIVEN SELF PRIMING PUMPS	21
CIRCULATORS AND EFFLUENT PUMPS	26
4" SUBMERSIBLE BOREHOLE PUMPS	27
6" SUBMERSIBLE BOREHOLE PUMPS	29
8" SUBMERSIBLE BOREHOLE PUMPS	31
SUMP PUMPS	32
VERTICAL MULTISTAGE PUMPS	34
ISOspec* PUMPS	36
PACKAGED PUMP SETS	40
USEFUL INFORMATION	44
POOL SELECTION GUIDE	46
AQUACULTURE & POOL PUMPS	48
POOL PUMPS	49
FILTRATION	50
SPA BATH PUMPS	51

About this Booklet

This booklet has been designed to make your pump or pressure system selection easy. The information you require to make your selection will depend on the particular purpose for which your pump system is needed. However, the basic consideration of anyone selecting a pump is: how much water do you need to pump and at what head or pressure do you need to pump it?

Your local Davey dealer can advise you about which Davey product will best suit your needs.

All technical data in this guide is for 220-240 volt 50Hz single phase or 380-415 volt 50Hz three phase. For other voltages (eg 110 volt 60Hz) consult the appropriate Davey office as shown on the back of this guide.

Flow and Pressure

There is a Davey Home Pressure System to suit virtually every home and budget. Choosing the most appropriate model for your application depends on a number of factors:

- How much water will be required? This is often considered in terms of the number of taps or outlets that are likely to be on at the one time.
- How much pressure will be needed?

Pumping through long runs of piping or to elevated places such as multi-storey buildings requires more pressure than flat sites or compact plumbing systems.

The following chart is a quick guide to selecting a Davey Home Pressure System to suit your flow and pressure requirements. Reference to the detailed product information on the following tables will enable you to select the type of pump and control system that best matches your particular situation.

	DAVEY HOME PRE	ESSURE SYSTEMS			
Premium models for the luxury of high pressure with multi-level dwellings and long runs of piping.			Dynaflo HS50-06T M3051T M3061T	Dynaflo HS60-08T M6041T	M6051T M6061T M8041T
Higher pressure for long runs of pipe and double storey buildings.			Dynaflo HS50-05T	Dynaflo HS60-06T Dynajet X70 Dynajet XJ70T	Dynajet X90 Dynajet XJ90T
Adequate pressure for most single storey buildings.	Aquamate	XP350T XP350P8C	HP45-05T Dynajet X50 Dynajet XJ50T	HP65-06T	HP85-08T
	Cottages & Weekenders	Small to average homes المقلة	Average sized homes with modern appliances	Larger homes with more than one bathroom	Large homes and families with capacity for garden watering as well
			FLOW		

Control System

PRESSUR

Since Davey made constant flow devices popular, most consumers have chosen the comfort such a controller provides. Davey's new Torrium[®] is the ultimate controller available today.

For consumers who want a more traditional system, Davey also offer a range of pressure switch controlled Home Pressure Systems.

I THINK,

THEREFORE

STATUS

PRIME

I AM...

The Torrium[®] delivers flow-on benefits

EW It's not easy living with water pressure problems. Poor or inconsistent water pressure can result in a broad range of problems, especially where the pump is the sole source of pressure to the household. Plus, no-one wants their pump cycling overnight because of a drop in water pressure. That's why Davey invented the extremely clever Torrium® Pressure System Controller. Five years in the making and thousands of hours of world-wide, in the field testing have culminated in a Pressure System Controller that can actually think for itself. The Torrium® can automatically adapt to changing conditions...because it has an in-built titanium mounted 'brain' that can out-smart everyday problems. It also means there are fewer installation and maintenance issues. This unique ability to respond to changing circumstances ensures a steady, reliable flow of water is virtually guaranteed day after day, year after year.

CONSTANT FLOW

With a Torrium[®] system you'll hardly notice the pump start. Better still, while you are using water, say in the shower, the pump doesn't cycle, overcoming those annoying temperature and pressure changes.

LOSS OF PRIME PROTECTION

If you run out of water, the last thing you need is a pump that continues to run without water. The Torrium® detects a loss of water supply (prime) and shuts the system down. What's more it will Auto retry to re-establish prime if possible and Auto-restart on water flow return.

Adaptive Pressure Switch

Torrium[®] measures the system pressure and adapts the cut-in pressure according to circumstances, thus providing a more reliable system with improved comfort and convenience.

SIMPLIFIED FAULT FINDING

Torrium[®] is equipped with a status indicator to make system fault finding quicker and more accurate. Torrium® can tell you if you have a slow filling toilet cistern, a loss of prime, a slow leak, low supply voltage, water overtemperature, even if someone has tried to override the Torrium[®] protection system.

AUTO RETRY

Auto retry in Torrium[®] allows the system to reset itself after a loss of prime, thus helping reduce system downtime.

LOW PRESSURE DROP

Torrium[®] has been designed to get the most from your pump, including pressure. The Torrium® has a very low water pressure loss through it, so that you can get the best performance at your outlets.

Torrium[®] is available complete as part of a Davey Home Pressure System or can be purchased separately to upgrade an existing pump.

Davey Jet Pump Home Pressure Systems

For many years, Davey jet assisted centrifugal home pressure systems have been the benchmark for reliable household pressure. Jet Pumps are an excellent and robust choice, especially for smaller systems up to 35 litres per minute, or for larger systems with long suction lines or suction lifts.

Davey Jet Pumps have excellent wear resistance and air handling ability, contributing to their well earned reputation for reliability.

Customers prefer and trust a Davey Jet Pump for their home.

JET PUMP HOME PRESSURE SYSTEMS

Model	Type of	Pressure	Nominal		Suction	n Lift in metre	s/feet		Pressure
	Controller	Tank	Operating Pressure	0 0	1 3.3	3 9.8	5 16.4	6 19.7	Switch Settings
			psi		Output i	n litres/minut	e gals/hour		Να
Aquamate* Cottages & weekenders	Pressure Switch	In-built 0.25 litre	140 /20	25 /330	24 /316	18 /238	15 /189	13 /172	140-280
XP350T XP350P8C* XJ350P Small to average homes	Torrium Pressure Switch Pressure Switch	Not required Top mounted 8 litre Purchase separately	140/20 140/20 140/20	35/462 35/462 35/462	33/436 33/436 33/436	30/398 30/398 30/398	24/317 24/317 24/317	22/297 22/297 22/297	Adaptive 140-280 140-280
Dynajet XJ50T Dynajet X50 Dynajet Ultra Average sized homes with modern appliances	Torrium Pressure Switch Pressure Switch	Not required Base mounted 35 litre Purchase separately	180/26 180/26 180/26	45 /594 45 /594 45 /594	43/567 43/567 43/567	36/475 36/475 36/475	30/398 30/398 30/398	27/356 27/356 27/356	Adaptive 180-390 180-390
Dynajet XJ70T Dynajet X70 Dynajet XJ70P For larger families and two storey homes	Torrium Pressure Switch Pressure Switch	Not required Base mounted 35 litre Purchase separately	210 /30 210 /30 210 /30	66 /871 66 /871 66 /871	62/818 62/818 62/818	57/752 57/752 57/752	45/594 45/594 45/594	40/528 40/528 40/528	Adaptive 210-420 210-420
Dynajet XJ90T Dynajet X90 Dynajet XJ90P For large double storey homes and farms	Torrium Pressure Switch Pressure Switch	Not required Base mounted 35 litre Purchase separately	210 /30 210 /30 210 /30	92 /1214 92 /1214 92 /1214	90/1188 90/1188 90/1188	82 /1082 82 /1082 82 /1082	68/898 68/898 68/898	58/766 58/766 58/766	Adaptive 210-350 210-350

*Also available with Loss of Prime pressure switch.

Davey HP Horizontal Multistage Systems with Torrium[®]

Davey's latest and most compact systems really pack a performance punch. Utilising Davey's patented floating neck ring system, the new HP models offer outstanding performance with whisper quiet operation.

Coupled to the NEW Torrium[®] controller, the complete system offers strong even pressure, whether it's one shower or multiple outlets at once.

These systems are easy to install with the convenience of the 360 degree rotatable Torrium[®] mounting flange and union. The new HP range will provide you with years of comfortable and dependable water pressure.

Davey HS Horizontal Multistage Systems with Torrium[®]

Davey's HS systems have established a name for powerful yet quiet performance, and now they are available with the NEW Torrium[®] controller. HS models provide even higher pressures than the HP models, making them ideal for installation on multi-storey homes or where the pump may be some distance from the dwelling.

HS models feature specially designed pump end components to provide outstanding performance coupled with low power consumption and noise output.

HP with Torrium

Dynaflo® HS with Torrium®

HP & HS TORRIUM[®] HOME PRESSURE SYSTEMS

Model	M	otor	Type of	Pressure	Nominal		Suction	Lift in metr	es/feet		Pressure	Connection
	K	(W T	Controller	lank	Pressure	0	1 2 2	3 0 8	5 16 /	6 10 7	Switch Settings	Size BSPP
	Input (P1)	Output (P2)			kPa psi		Output in li	tres/minut	e gals/hour	17.7	kPa	inlet/ outlet
HP45-05T Average sized homes with modern appliances	0.83	0.58	Torrium	Not required	200 /29	63 /831	61 /805	57 /752	52/686	48 /634	Adaptive	1%″F/1″M
HP65-06T For larger families and two storey homes	0.9	0.6	Torrium	Not required	200/ 29	85 /1122	81 /1069	75 /990	66 /871	62 /818	Adaptive	1%″F/1″M
HP85-08T For large double storey homes and farms	1.15	0.80	Torrium	Not required	200 /29	125 /1650	121 /1597	111 /1465	98/ 1293	92 /1214	Adaptive	1%″F/1″M
Dynaflo HS50-05T Average sized homes with modern appliances	.74	.53	Torrium	Not required	210 /30	48 /634	47 /620	42 /554	38/ 502	35 /462	Adaptive	1%″F/1″M
Dynaflo HS50-06T Average sized homes with two storeys or long runs of plumbing	.89	.60	Torrium	Not required	290 /42	48 /634	46 /647	42 /554	39 /515	37 /488	Adaptive	1%″F/1″M
Dynaflo HS60-06T Larger homes and families. Power to run garden sprinklers as well	.82	.57	Torrium	Not required	210 /30	68 /897	65 /858	59 /779	54 /713	50 /660	Adaptive	1%″F/1″M
Dynaflo HS60-08T Large double storey homes and garden watering	1.1	.76	Torrium	Not required	290 /42	68 /897	66 /871	61/ 805	56 /739	54 /713	Adaptive	1%″F/1″M

Davey M Series Horizontal Multistage **Pumps & Pressure Systems**

For larger systems requiring higher flow or pressure, or where the preference is for all stainless steel pump components, inside and outside, Davey M Series pumps are the answer. A choice of control systems include a Torrium® controller for anticycling operation and protection against dry running, with extra tank requirement or as a standard pressure switch and tank operation. M Series can also be packaged with our Davey Monsoon 3C with up to 3 pumps operating (refer Packaged Pump Sets pg 41).

Note: Torrium[®] maximum flow rate up to 170lpm.

Pressure Switch Operated

			Suctio	on life in metre s	s/feet		
	Motor kW	Nominal Operating Pressure	0 0	3 9.8	5 16.4	Pressure Settings/Range	Connection Size
Model	(P ₂)	kPa/psi	Output in li	tres/minute, g	gallons/hour		inlet/outlet
M3041 Average sized homes with modern appliances and double storeys	0.55	250 36	58 767	51 674	N/R	200 - 400 kPa	1″F/1″M
M3051 Average sized homes with modern appliances and double storeys	0.75	300 43	61 806	55 727	N/R	250 - 500 kPa	1″F/1″M
M3061 Multi level homes with modern appliances and long runs of piping	1.10	400 58	60 793	56 740	N/R	300 - 600 kPa	1″F/1″M
M6041 Large multi storey dwellings, livestock, irrigation and commercial use	0.75	200 29	108 1427	98 1295	90 1189	150 - 275 kPa	1¹/₄″F/1″M
M6051 Large two storey dwellings and garden water supply	1.10	300 43	108 1427	101 1335	97 1282	250 - 500 kPa	1¹/₄″F/1″M
M6061 Large multi storey dwellings, livestock, irrigation and commercial use	1.50	350 51	108 1427	101 1335	98 1295	300 - 550 kPa	1¹/₄″F/1″M
M8041 Farm & garden water supply, irrigation, commercial premises	1.50	300 43	175 2313	160 2115	148 1956	200 - 425 kPa	1 ¹ / ₂ ″F/1″M

PRESSURE TANKS

DIMENSIONS

NOMINAL DRAW OFF CAPACITY IN LITRES

														1010110
Tank	Max			Pressure S	witch Range	e kPa (psi)							Inl	let
Capacity (litres)	Pressure Rating (kPa)	150-250 (22-36)	150-300 (22-44)	200-400 (29-58)	250-400 (36-58)	250-500 (36-73)	300-600 (44-88)	500-1000 (73-145)	700-1200 (101-174)	1000-1600 (145-232)	Diameter (mm)	Height (mm)	Size (BSP male)	Position
8	700	2.2	3.0	3.2	2.4	3.3	3.4	N/A	N/A	N/A	200	300	³ / ₄ ″	Bottom
18	700	5.0	6.7	7.2	5.4	7.4	7.6	N/A	N/A	N/A	274	360	1′	Bottom
35	700	10.0	13.3	14.0	10.5	14.6	14.7	N/A	N/A	N/A	380	400	1″	Bottom
50	700	14.3	18.8	20.0	15.0	20.8	21.0	N/A	N/A	N/A	380	570	1″	Side
105	700	30.0	39.4	42.0	31.5	43.7	44.1	N/A	N/A	N/A	500	680	1 ¹ /4″	Side
24	1600	6.3	8.3	9.0	6.3	9.4	10.3	10.5	9.1	8.4	270	485	1″	Bottom
105	1050	30.0	39.4	42.0	31.5	43.7	44.1	47.7	N/A	N/A	500	680	1 ¹ / ₄ "	Side
	Tank Capacity (litres) 8 18 35 50 105 24 105	Max Pressure Rating (titres) 8 700 18 700 35 700 50 700 105 700 24 1600 105 1050	Max Pressure Rating (titres) Max Pressure Rating (kPa) ! 8 700 2.2 18 700 5.0 35 700 10.0 50 700 14.3 105 700 30.0 24 1600 6.3 105 1050 30.0	Max Pressure Rating (litres) J50-250 (22-36) 150-300 (22-44) 8 700 2.2 3.0 18 700 5.0 6.7 35 700 10.0 13.3 50 700 14.3 18.8 105 700 30.0 39.4 24 1600 6.3 8.3 105 1050 30.0 39.4	Max Pressure (itres) Max Pressure (kpacity) Image:	Max Pressure Rating (itres) Max Pressure Rating (kPa) ISO-250 (22-36) ISO-300 (22-44) 200-400 (29-58) ISO-400 (26-58) 8 700 2.2 3.0 3.2 2.4 18 700 5.0 6.7 7.2 5.4 35 700 10.0 13.3 14.0 10.5 50 700 14.3 18.8 20.0 15.0 105 700 30.0 39.4 42.0 31.5 24 1600 6.3 8.3 9.0 6.3 105 1050 30.0 39.4 42.0 31.5	Max Pressure (itres) Max Pressure (kPa) ISO-250 (22-36) ISO-300 (22-44) 200-400 (29-58) ISO-400 (36-50) ISO-500 (36-73) 8 700 2.2 3.0 3.2 2.4 3.3 18 700 5.0 6.7 7.2 5.4 7.4 35 700 10.0 13.3 14.0 10.5 14.6 50 700 14.3 18.8 20.0 15.0 20.8 105 700 30.0 39.4 42.0 31.5 43.7 24 1600 6.3 8.3 9.0 6.3 9.4 105 1050 30.0 39.4 42.0 31.5 43.7	Max Pressure (titres) Max Pressure (titres) Image: Description of the text (22-36) Pressure Sufficiency (29-58) Software Sufficiency (29-58) Sof	Max Pressure (itres) Max Pressure (kPa) ISO-250 (22-36) ISO-300 (22-44) 200-400 (29-58) 250-400 (36-58) 250-500 (36-73) 300-600 (44-88) 500-1000 (73-145) 8 700 2.2 3.0 3.2 2.4 3.3 3.4 N/A 18 700 5.0 6.7 7.2 5.4 7.4 7.6 N/A 35 700 10.0 13.3 14.0 10.5 14.6 14.7 N/A 50 700 14.3 18.8 20.0 15.0 20.8 21.0 N/A 105 700 30.0 39.4 42.0 31.5 43.7 44.1 N/A 24 1600 6.3 8.3 9.0 6.3 9.4 10.3 10.5 105 1050 30.0 39.4 42.0 31.5 43.7 44.1 47.7	Max Pressure Rating (itres) Max Pressure Rating (kPa) ISO-250 (22.36) ISO-300 (22.44) 200-400 (29.58) 250-500 (36-53) 300-600 (44-88) 500-1000 (73.145) 700-1200 (101.174) 8 700 2.2 3.0 3.2 2.4 3.3 3.4 N/A N/A 18 700 5.0 6.7 7.2 5.4 7.4 7.6 N/A N/A 35 700 10.0 13.3 14.0 10.5 14.6 14.7 N/A N/A 50 700 14.3 18.8 20.0 15.0 20.8 21.0 N/A N/A 105 700 30.0 39.4 42.0 31.5 43.7 44.1 N/A N/A 105 1050 30.0 39.4 42.0 31.5 43.7 44.1 47.7 N/A	Max Pressure (titres) Mon-1200 (table (titres) Mon-1600 (table (table table	Max Pressure (titres) Max Pressure (titres) Image:	Max Pressure Raing (ibres)Max Pressure (22-36)150-300 (22-44)200-400 (29-58)250-400 (36-58)250-500 (44-88)300-600 (44-88)500-1000 (101-174)1000-1600 (145-232)Diameter (mm)Height (mm)87002.23.03.22.43.33.4N/AN/AN/A200300187005.06.77.25.47.47.6N/AN/AN/A2013603570010.013.314.010.514.614.7N/AN/AN/A3804005070014.318.820.015.020.821.0N/AN/AN/A38057010570030.039.442.031.543.744.1N/AN/AN/A5006802416006.38.39.06.39.410.310.59.18.4270485105105030.039.442.031.543.744.147.7N/AN/A500680	Max Pressure Rating (titres) Max Pressure Rating (the base base base base base base base bas

SUPERCELL PRESSURE TANKS

Davey Supercell Pressure Tanks are designed to provide many years of reliable service. These robust, hydropneumatic water pressure vessels are manufactured from the highest quality materials in compliance with the strict requirements of ISO 9001.2000 quality standards.

All models (except Supercell 24HP+) are of the captive diaphragm design, and all tanks feature heavy duty butyl diaphragms that comply with international standards for potable water applications. Supercell 24HP+ tanks have replaceable diaphragms with high quality stainless steel closing flanges.

Not only do they look good from the outside but, inside, the tank shell is protected from corrosion by a safe potable grade epoxy coating. For added peace of mind, each tank is individually tested to guarantee its reliability. These dependable tanks are available in a variety of sizes and in three pressure ratings. They can be used for a variety of accumulator functions, such as:

- Household, farm or industrial pressure systems
- Hydronic heating system expansion tanks
- Water hammer arrestor systems

WATER FILTRATION & TREATMENT

STERIFLO[®]

Filterpure[®] and Steriflo[®] Peace of Mind

Water is essential for life, a healthy lifestyle is promoted with water free from contamination and impurities.

For clean, safe and fresh tasting water in unlimited volumes right in your home, a simple three process system will ensure a reliable supply, for your peace of mind.

FILTRATION

Water can be discoloured and tainted by particles such as: dust, rust, sediment, hair, algae, and parasitic cysts (Giardia & Cryptosporidium). Water is swiftly cleared of these particles once passed through an appropriate Filterpure cartridge, rejuvenating the sparkle in truly clean water. Ideally, a coarse and then a fine cartridge will be installed together.

Filtration Rejuvenating the sparkle in truly clean water. Removes: dust, rust, sediment, hair, algae.

DISINFECTION

Microscopic living organisms can thrive in water such as: bacteria, mould, viruses, yeast, and parasitic cysts (Giardia & Cryptosporidium). Exposure to Ultra Violet light is a safe and effective way to neutralise these unhealthy organisms in your water. Davey Steriflo[®] UV units are ideal for domestic water disinfection.

Disinfection Ultra Violet light for safe, chemical free disinfection of water. Neutralise: bacteria, mould, viruses, yeast & parasitic cysts.

PURIFICATION

Dissolved impurities that affect the taste, odour and safety of your water can include: chlorine, pesticides, herbicides, and solvents. Filterpure cartridges containing activated carbon absorption media are an effective tool to purify water of these unwanted substances. Purification is most effective at the point of use, like the kitchen tap. Bacteriostatic cartridges inhibit the growth of organisms within the element fabric.

Purification Dissolved impurities are best tackled with activated carbon. Removes: taste, odour, chlorine, pesticides, herbicides and solvents.

WATER FILTRATION & TREATMENT

Davey Filterpure[®] & Steriflo[®] systems offer clean, safe and healthy water, without using chemicals for one tap or for the entire house. Wherever you get your water, be it mains water, rainwater, bore or even dam water, there is a Davey Filterpure and Steriflo system for you.

Design of your Water Process

The size of housing is determined simply by how many taps or appliances you want to provide water to ie. regular 10" for a single tap and jumbo 10" and 20" for anything larger - up to whole of house. A clever installation will have two jumbo 10" or 20" cartridge filters installed on the main cold water line entering your house followed with a UV disinfection system. Drinking and cooking taps are then protected with a standard 10" purification filter.

The ideal sequence of elements would start with a coarse 20 micron PP cleanable element to remove large particles and increase the life of secondary elements. A second, finer PS element of 1 or 5 micron as stage two will really start to produce pure clear water. For individual outlets such as kitchen taps a smaller purification filter with activated carbon and a bacteriostatic media will ensure that you have great water and peace of mind.

Cartridge Element Types

PLEATED POLYESTER (PP SERIES)

Pleated polyester cartridges offer reduced operating costs for many applications as the pleated construction allows them to be rinsed clean and reused. In addition the cartridges have a high surface area and can handle higher flows than disposable depth cartridges.

The availability of Jumbo sized PP cartridges means that high flows can be economically filtered.

The 20 micron is an outstanding prefilter, easy to clean with a high dirt holding and flow capacity.

SPUN POLYPROPYLENE (PS SERIES)

These are pure polypropylene with no fillers, binders, adhesives or surfactants, so are ideal for food and drinking water use and any applications where high purity is important. The melt blown fibres give a graduated pore structure allowing for depth capture in the matrix. Generally used as a second stage for finer micron filtration.

PURIFICATION CARTRIDGES

Activated Carbon purification cartridges are typically for the removal of taste, odour, chlorine, pesticides, and other organic chemicals. They are best used at the final point of use stage in your water process.

Filterpure cartridges need to be replaced and /or cleaned at regular intervals to ensure they are performing correctly.

	CARTRIDGE	E ELEMENT TY	/PES				
Filtration Cartridges Polyester Pleated (cleanable)	Part No. Micron Size Max. Flow Rate	5PP10 5 20 lpm	20PP10 20 30 lpm	5PP10J 5 50 lpm	20PP10J 20 75 lpm	5 PP20J 5 100 lpm	20PP20J 20 120 lpm
Filtration Cartridges Polypropylene Spun Melt	Part No. Micron Size Max. Flow Rate	1PS10 1* 15 lpm	5PS10 5 15 lpm	20PS10 20 15 lpm	1PS10J 1* 35 lpm	1PS2OJ 1* 70 lpm	PSDG10J 25 & 1* 35 lpm
Purification Cartridges Activated Carbon	Part No. Micron Size Max. Flow Rate	AC10 5 8 lpm	ACB10 5 8 lpm	ACB1OJ 5 20 lpm	ACB2OJ 5 40 lpm	BPAC10 0.5# 4 Ipm	SBPAC10 0.5# 4 lpm

Note: Cartridges marked * are suitable for cyst reduction, cartridges marked # are suitable for cyst removal. Davey recommend UV disinfection as part of a water treatment programme.

Suits 10" Standard housing.

Suits 10" Jumbo housing.

Suits 20" Jumbo housing.

	UV DISINFE	CTION		
Steriflo [®] Models	Model No.	UV40-20	UV75-25	UV130-40
	Max. Flow*	40 lpm	75 lpm	130 lpm
	Inlet/Outlet	³/4" BSP(M)	1″ BSP(M)	1 ¹ /2" BSP(M)

*Maximum flow is for clean and clear water - prefiltration and post filtration may be required depending on installation.

SHALLOW WELL PRESSURE PUMPS

Surface Mounted Shallow Well Pumps

For depths to 7.5 metres

The Davey range of quality Australian-made shallow well pumps and pressure systems is ideal for supplying high pressure water for garden sprinklers, through to stock watering and washdown applications.

The 95S, 125S and 165S models feature a unique pump casing, cast in strong marine grade aluminium with a Rilsan[®] lining. This ensures extremely high corrosion and abrasion resistance for simple, trouble-free operation in the years to come.

They also feature IP56 Rated TEFC (Totally Enclosed Fan Cooled) motors to help exclude dust, water and vermin. Top of the range is the powerful and rugged Prime Jet 240 pump, capable of delivering flows to 240 lpm, or developing discharge pressures in excess of 66 metres.

Shallow well pumps offer versatility of performance. Simply by changing the jet and venturi, the performance of the pump can be altered to compensate for alterations to pipework systems, trough elevations or other specific needs.

Davey's shallow well pumps and systems can be mounted on the surface close to the water source and can handle suction lifts down to 7.5 metres.

They come as both a pump only for manual operation or, alternatively, can be converted to an automatic pressure system by combining with a free standing Supercell 50C or Supercell 105C tank. Davey also has smaller Supercell tanks available for mounting on top of the pump, where applicable (refer page 9).

	Jet	Total	ŀ	26 85	28	92	34 112	3	Delivery Head i 38 125	n metres/ 41	'feet 135	48	157	55	180	62	203	66 217	Maxin	num	Pres	sure
Pump Model	Kit No	Suction Head		260 38	280	41	340 49	3	Delivery Hea 380 55 Dutput per minute	d in kPa/p 410 din litros/	osi 59 gallans	480	70	550	80	620	90	660 96	Shut- Press	Off ure	Swi Sett	tch ting nci
95S 1ph	22690* Jet-Black Venturi-Green	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5	95 20.8 86 18.9 70 15.3 55 12.0 42 9.2	91 20 83 10 69 11 55 11 42 10	0.0 3.2 5.1 2.0 0.2	6013.15512.0459.8378.1347.4	4: 4: 3: 2: 1:	12 9.2 10 8.7 10 6.5 12 4.8 15 3.2	29 27 17 10	6.3 5.9 3.7 2.1								480 476 450 430 412	psi 70 69 65 62 60	260 to 380	38 to 55
1.6kW ★ 1.1kW ♀ 7.2A	22691 Jet-Brown Venturi-White	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5				6514.26013.14810.5388.3316.8	5 5 4 3 3	i3 11.6 i0 10.9 i1 9.0 i7 8.1 i1 6.8	46 43 35 32 28	10.1 9.4 7.6 7.0 6.1	31 29 24 21 20	6.8 6.3 5.2 4.6 4.3	19 17 14 11 10	4.1 3.7 3.0 2.4 2.1				680 670 645 630 620	98 97 93 91 90	340 to 510	49 to 74
1255	22693* Jet-Black Venturi-Black	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5	126 27.7 113 24.8 93 20.4 70 15.3 57 12.5	126 2' 113 2' 93 2' 70 1' 57 1'	7.7 1.8 0.4 5.3 2.5	10021.98418.47015.35912.9439.4	7: 6: 5: 3: 1:	15.8 14.0 10.9 <td>51 45 28 11</td> <td>11.2 9.8 6.1 2.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>482 470 445 425 400</td> <td>70 68 64 62 58</td> <td>260 to 380</td> <td>38 to 55</td>	51 45 28 11	11.2 9.8 6.1 2.4								482 470 445 425 400	70 68 64 62 58	260 to 380	38 to 55
1ph 2.1kW ★ 1.4kW ♀	22694 Jet-Green Venturi-Brown	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5				90 19.7 82 18.0 67 14.7 53 11.6 44 9.6	7: 7: 6: 5: 4:	78 17.1 73 16.0 56 14.5 53 11.6 14 9.6	67 63 56 52 44	14.7 13.8 12.3 11.4 9.6	47 43 37 34 33	10.3 9.4 8.1 7.4 7.2	28 24 19 16 15	6.1 5.2 4.1 3.5 3.2				660 650 630 615 605	96 94 91 89 88	340 to 510	49 to 74
8.5A	22695 Jet-Yellow Venturi-White	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5							60 54 48 38 31	13.1 11.8 10.5 8.3 6.8	45 39 36 33 28	9.8 8.5 7.9 7.2 6.1	31 28 25 23 19	6.8 6.1 5.4 5.0 4.1	20 17 15 13 10	4.3 3.7 3.2 2.8 2.1		780 750 730 710 690	113 109 106 103 100	410 to 590	59 to 86
165S 1ph 2.4kW ★	22697* Jet-White Venturi-Yellow	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5	16536.214431.612026.39019.77015.3	164 3i 144 3 120 2i 90 1i 70 1i	5.0 1.6 5.3 9.7 5.3	10523.09019.78218.07616.76013.1	7 6 5 5 3	7 16.9 67 14.5 68 12.7 62 11.4 62 7.0	62 53 38 26	13.6 11.6 8.3 5.7								490 480 454 440 415	71 70 66 64 60	260 to 380	38 to 55
1.8k₩ ♥ 10.0A 3ph	22698 Jet-Red Venturi-Red	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5				11224.610021.98819.37015.35411.8	8 8 7 6 5	88 19.3 82 18.0 75 16.4 64 14.0 64 11.8	76 71 64 57 50	16.7 15.6 14.0 12.5 10.9	51 47 41 32 26	11.2 10.3 9.0 7.0 5.7	26 22 16 8	5.7 4.8 3.5 1.7				630 622 598 572 552	91 90 87 83 80	340 to 510	49 to 74
2.3kW ★ 1.8kW ♀ 4.2A	22699 Jet-Red Venturi-Green	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5									53 50 48 43 34	11.6 10.9 10.5 9.4 7.6	42 39 36 34 32	9.2 8.5 7.9 7.4 7.0	30 28 25 23 21	6.5 6.1 5.4 5.0 4.6	24 5.3 22 4.8 20 4.4 17 3.7 16 3.5	830 823 805 795 778	120 119 117 115	480 to 660	70 to 96
Prime Jet 240	22680 Jet- P/No 6076-11 Venturi P/No 6075-8	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0		228 50 208 44 165 30 132 24 108 24).1 5.7 5.2).0 3.7	16436.015032.911425.08218.06414.0	1 1 7 4 3	30 28.5 12 24.6 75 16.4 16 10.1 31 6.8										470 455 435 415 405	68 66 63 60 59	240 to 370	35 to 54
1ph 3.2kW ★ 2.5kW ♀	22681 Jet- P/No 6076-4 Venturi - P/No 6075-5	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5	234 51.5 211 46.4 167 36.7 133 29.3 108 23.7	192 42 170 3 134 22 108 22 86 14	2.2 7.3 9.4 8.7 8.9	17839.116436.012727.910422.88618.9	1 1 1 9 8	57 34.5 46 32.1 18 25.9 28 21.5 36 18.9	128 114 88 74 66	28.1 25.0 19.3 16.2 14.5	78 64 45 34 22	17.1 14.0 9.8 7.4 4.8						570 555 535 515 500	83 80 78 75 73	300 to 470	44 to 68
14.0A 3ph 3.0kW *	22682 Jet- P/No 6076-7 Venturi P/No 6075-9	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0							130 117 94 75 62	28.5 25.7 20.6 16.4 13.6	110 98 81 68 58	24.1 21.5 17.8 14.9 12.7	78 66 48 36 28	17.1 14.5 10.5 7.9 6.1	46 36 19 6	10.1 7.9 4.1 1.3		735 710 670 635 610	107 103 97 92 88	400 to 590	58 to 86
2.3kW 📀 5.1A	22683 Jet- P/No 6076-8 Venturi- P/No 6075-10	0 1.5 4.0 1 6.0 2 7.5 2	0 5 3 0 5									101 90 72 57 34	22.2 19.7 18.8 12.5 7.4	77 74 58 48 45	16.9 16.2 12.7 10.5 9.8	50 46 34 26 21	10.9 10.1 7.4 5.7 4.6	41 9.1 35 7.8 25 5.6 18 4.0 13 2.9	790 770 740 720 700	115 112 107 104 102	500 to 690	73 to 100

* Input kW (P1) Output kW (P2)

Important Information

- Denotes standard configuration. Models 95S, 125S & 165S may be converted to higher pressure by fitting relevant Jet & Venturi. Specify Jet Kit No. when ordering Prime Jet 240.
- Plumbing Connections: Inlet 1¹/₂" (38 mm) BSPP Female. Outlet 1¹/₄" (32mm) BSPP Female all models.
- Pumps are supplied with pressure switches connected, suitable for automatic pressure system operation. To convert litres/minute to gallons/hour multiply by 13.2. All imperial data is an approximation of metric figures.
- Specifications subject to change without notice. All single phase models supplied with plug and lead for 220/250 volt 50Hz operation. Prime Jet 240 only may be reconnected for use on nominal 480 volt 50Hz single phase supply. For 3 phase nominal 415 volt, specify when ordering (available for 165S and Prime Jet 240 only).

DEEP WELL PRESSURE PUMPS

Surface Mounted Deep Well Pumps

For depths to 50 metres

The Davey range of quality Australian-made deep well pumps and pressure systems is ideal for handling suction lifts beyond 7.5 metres.

By submerging the jet and venturi down the bore, flows can be provided from as deep as 50 metres. To make installation and servicing easier, the pump is conveniently installed at ground level.

The 95D, 125D, 165D and Prime Jet 240 are able to retrieve water from depths to 50 metres and can produce flows up to 194 lpm from shallower depths.

The 95D, 125D, 165D models feature a unique pump casing cast in marine grade aluminium, lined with a strong engineering plastic to ensure extremely high corrosion resistance and the ability to withstand the harsh operating conditions often encountered in pumping water from bores, wells, etc. The powerful Prime Jet 240 is made of cast iron to cater for the higher operating pressures.

Davey deep well pumps are fitted with the Davey automatic demand response (ADR) valve to ensure peak performance at all times and help protect against loss of prime.

Davey deep well systems can also be installed in horizontally offset situations to draw water from distant dams, rivers, etc. This allows the pump to be mounted away from the source of water to gain access to power, or in places where there is the possibility of flooding.

All Davey deep well pumps feature IP56 Rated TEFC (Totally Enclosed Fan Cooled) Motors to help exclude dust, water and vermin.

Where electric power is not available, a Davey engine driven pump can be combined with a deep well injector to deliver water from deep bores. For fitting configurations refer page 25.

	Injector	*Max. S	ihut	Outlet											[Depth t	o water	r metr	es/fee													
Pump Model	Kit No. Nominal	Off Press	sure	Pressure		<u>6</u> 20	9 30	<u>12</u> 30	╉	<u>15</u> 10	<u>1</u>	8	2	1 .0	2	2 <u>4</u> 70	<u>2</u>	27 20	<u>3</u>) 2	3	1 <u>3</u> ng		36 19	3 1'	9 28		12 28	45	2	<u>5</u>	0 1
Model	Bore Size	kPa	psi	kPa	psi			57		- 17					Outp	put per	minute	e in litr	es/gal	lons		00		10		20		50		,		-
95D 1ph	22469 (4″) 100mm	550	80	140 280 420	20 40 60	8518.65712.5214.6	7316.04910.7163.5	6414.0408.1112.4	0 7 4	55 12.0 32 7.0	46 25	10.1 5.4																				
1.0kw ★ 1.1kW © 7.2A	22470 (4") 100mm	645	93	140 280 420	20 40 60			49 10.7 34 7.4 16 3.9	7 4 5	439.4296.3132.8	39 27 12	8.5 5.9 2.6	30 21 9	6.5 4.6 1.9	26 18	5.7 3.9	23 16	5.0 3.5	18 13	3.9 2.8												
125D	22471 (4") 100mm	575	83	210 280 420	30 40 60	96 21.177 16.934 7.4	85 18.665 14.226 5.7	73 16.0 57 12.1 20 4.1	0 5 3	60 13.147 10.314 3.0	51 39	11.2 8.5																				
1ph 2.1kW ★ 1.4kW ✿	22472 (4") 100mm	660	96	210 350 480	30 50 70		63 13.839 8.519 4.1	55 12.0 34 7.4 16 3.5	0 4 5	4910.7296.3122.6	42 24 10	9.2 5.2 2.1	36 21	7.9 4.6	29 18	6.3 3.9	25 14	5.4 3.0	22 11	4.8 2.4												
8.5A	22570 (5″) 125mm	650	94	210 350 480	30 50 70		87 19.156 12.329 6.3	80 17.951 11.226 5.7	5 2 7	70 15.3 43 9.4 21 4.6	61 37 17	13.4 8.1 3.7	53 33 13	11.6 7.2 2.8	45 23	9.8 5.0	37 19	8.1 4.1	32 15	7.0 3.2	27 11	5.9 2.4	21	4.6								
	22473 (4") 100mm	620	90	210 350 480	30 50 70	10723.56013.1275.9	9320.45010.9204.3	 83 18.2 42 9.2 14 3.0 	2 2 0	71 15.6 35 7.6 10 2.1	59 29	12.9 6.3	48 23	10.5 5.0																		
165D 1ph 2.4kW ★	22474 (4") 100mm	635	92	210 350 480	30 50 70			6313.8408.3194.3	8 7 1	54 11.8 34 7.4 14 3.0	46 28 10	10.1 6.1 2.1	40 24	8.7 5.2	35 20	7.6 4.3	27 16	5.9 3.5	24 12	5.2 2.6												
1.8kW 📀 10.0A	22475 (4″) 100mm	750	109	210 350 480	30 50 70										25 19 12	5.4 4.1 2.6	24 18 11	5.2 3.9 2.4	21 16 10	4.6 3.5 2.1	19 14	4.1 3.0	17 13	3.7 2.8	15 11	3.2 2.4	12 9	2.6 1.9				
3ph	22571 (5″) 125mm	590	86	210 350 480	30 50 70	12226.87416.2275.9	11124.46213.6183.9	98 21.9 51 11.2 11 2.4	5 2 4	87 19.1 40 8.7	70 29	15.3 6.3	56 20	12.3 4.3																		
2.3kW ★ 1.8kW ♀ 4.2A	22572 (5″) 125mm	630	91	210 350 480	30 50 70						64 38 18	14.0 8.3 3.9	57 33 14	12.5 7.2 3.0	49 28 10	10.7 6.1 2.1	42 24	9.2 5.2	37 20	8.1 4.3	31 15	6.8 3.2										
	22573 (5″) 125mm	540	78	210 280 350	30 40 50												37 30 21	8.1 6.5 4.6	30 27 17	6.5 5.9 3.7	27 22 13	5.9 4.8 2.8	21 18 10	4.6 3.9 2.1	17 14	3.7 3.0	12 10	2.6 2.1				
Drimo	22427 (4″) 100mm	550	80	210 350 480	30 50 70	16536.210422.8327.0	13429.48017.5163.5	110 24.7 62 13.0	1 6	81 17.8 45 9.8	59 39	12.9 8.5																				
Jet 240	22428 (4") 100mm	815	118	210 350 480	30 50 70		53 11.6 27 5.9	81 17.8 75 16.4 45 9.8 21 4.6	8 4 8 6	77 16.9 67 14.7 37 8.1 15 3.2	72 57 30 9	15.8 12.5 6.5 1.9	60 47 22	13.0 10.3 4.8	48 37 16	10.5 8.1 3.5	40 29 9	8.7 6.3 1.9	32 22	7.0 4.8												
1pn 3.2kW ★ 2.5kW ♥	22566 (5″) 125mm	525	76	210 350 480	30 50 70	19442.611625.5306.5	16636.59621.1102.1	132 29.0 72 15.8	0 8	104 22.8 58 12.7																						
14.0A	22567 (5″) 125mm	560	81	210 350 480	30 50 70			158 34.7 98 21.8 33 7.2	7 5 2	130 28.5 84 18.4 20 4.3	108 64	23.7 14.0	84 48	18.4 10.5	64 28	14.0 6.1																
3ph 3.0kW ★ 2.3kW ♀	22568/22468 (5") 125mm (4") 100mm	830	120	210 350 480 620	30 50 70 90		69 15.1 35 7.6	101 22.3 96 21.3 61 13.4 29 6.3	2 1 4 3	9520.88618.95111.2214.6	88 73 41 15	19.3 16.0 9.0 3.2	82 64 33 9	18.0 14.0 7.2 1.9	71 54 26	15.6 11.8 5.7	62 45 19	13.6 9.8 4.1	51 37 12	11.2 8.1 2.6	41 29	9.0 6.3										
5.1A	22569 (5″) 125mm	830	120	210 350 480 620	30 50 70 90										52 45 34 18	11.4 9.8 7.4 3.9	49 42 30 15	10.7 9.2 6.5 3.2	47 39 25 11	10.3 8.5 5.4 2.4	46 34 21	10.1 7.4 4.6	42 31 18	9.2 6.8 3.9	40 30 16	8.7 6.5 3.5	37 26 13	8.1 5.7 2.8	35 23 10	7.8 5.1 2.2	32 20	7.1 4.4

* Input kW (P1)

Output kW (P2)

Important Information

Pump outlet: 1¹/₄" (32 mm) BSPP Female. 'Automatic Demand Response' fitted as standard on all models.
Suction pipe sizes: 1¹/₄" and 1¹/₄" 1.D imperial polypipe for injector kit nos 22469 – 22475 and 22427 – 22428. 2" and 1¹/₂" 1.D Imperial polypipe for injector kit nos 22570 – 22573 and 22566 – 22569. 2" and 1¹/₄" 1.D Imperial polypipe for injector kit nos 22468.
Max. shut-off pressures are at shallowest depth to water for each injector. Reduce by 10kPa for every 1 metre of extra depth to water.
All performances are with injector submergence of 3m and minimum pipe length of 12m.

- All pipe fittings and hose clips are included with deep well injectors. For offset applications, performance will be reduced if suction pipe lengths exceed depths indicated for borehole installations. Consult your Davey dealer for recommendations on pipe sizes.
- Pumps are supplied with pressure switches connected, suitable for automatic pressure system operation in conjunction with Davey Supercell tanks.
- To convert litres/min to gallons/hour multiply by 13.2. All imperial data is an approximation of metric figures. Specifications subject to change without notice.
- All single phase models supplied with plug and lead for 10amp (Prime Jet 240, 15amp) 220/250 volt 50Hz operation. Prime Jet 240 only may be re-connected for use on nominal 480 volt 50Hz single phase supply. 3 phase 415 volt available in models 165D and Prime Jet 240 only specify when ordering.

RAINWATER HARVESTING

CHERISH THE RESOURCE AND MANAGE IT WISELY!

RainBank[®] is an automatic controller for rainwater harvesting. Incorporated into the design of new homes or retrofitted to existing properties, RainBank[®] controls the water supply for toilet and laundry applications by automatically switching the water source from the domestic mains to rainwater when a demand is sensed and rainwater is available in the storage tank.

RainBank[®] is the first product to use rainwater as the water supply for toilet and laundry applications in metropolitan areas and control it automatically. It can save up to 40 per cent of a household's drinking quality water which is normally used in these applications thereby helping conserve Australia's precious water reserves.

EreenPlumbers Reserved WaterMark

SEAMLESS AND CONVENIENT

RainBank[®] does the thinking for you by automatically switching the water source from the domestic mains to the rainwater supply stored in the tank whenever a toilet is flushed or a washing machine used. If the rainwater supply is depleted at any time or in the case of a power failure, RainBank[®] automatically supplies mains water as the back up.

ENVIRONMENTALLY FRIENDLY

RainBank[®] only operates the pump to pressurise the rainwater when required. Energy costs are minimised as there is no double handling or repressurising of the mains water. Daily power consumption figures for a pump and RainBank[®] system supplying toilet cisterns in a three person dwelling is the equivalent to the operation of a reverse cycle 2,400W air conditioner for 3 minutes a day.

EASY TO INSTALL

RainBank[®] can be incorporated into the design of new homes or retrofitted to existing properties. RainBank[®] is available in kit form with a selection of three pumps.

SAFE

RainBank[®] has achieved the requirements of Standards Australia's draft Technical Specification ATS 5200.466—2004, for Rainwater tank connection devices. RainBank[®] also complies with AS3500, AS4020 and features Water Mark approval license number IPC20009, for connection to a drinking water supply.

ELECTRIC TRANSFER PUMPS

XF Series

The XF Series pumps offer high efficiency and longer operating life. Manufactured to the highest standards from quality tested materials including stainless steel pump shaft, corrosion resistant polycarbonate impellers and IP55 TEFC Motors.

From the XF range of pumps you can choose a pump for such applications as:

- General water transferHydroponic systems
- Sea water pumpingAquaculture applications
- Water circulation
- Dairy cooling towers
 S
- Desalinated water
 - s Spearpoints

Special XF171S and XF192S models are available which have silicon carbide seals and Thermotection[®]. Thermotection automatically stops the pump if the water in the casing exceeds 85°C, to avoid damage from closed head running. Thermotection automatically resets when the temperature falls below 65°C.

HP45-05

The HP45-05 offers outstanding pump performance and extra quiet operation all packed in a compact, easily installed package.

Dynaprime® X201 Self Priming Pump

Manufactured from corrosion resistant materials and featuring a 0.63kW IP55 TEFC motor, this versatile pump finds a variety of applications. With an 'open' impeller – giving it the ability to handle soft solids to 10mm and self prime down to 7m – the X201 is ideal for sump emptying, septic effluent disposal and water supply from spearpoints. Motor kW input – (P₁) 0.92 Motor kW output – (P₂) 0.63

XF & HP Series Performance

			Мах								Tota	l Head r	netres	/feet									Connection
	Motor	(kW)	Total	3	10	6	20	9 30	12	39	15	49	18	59	21	69	24	79	27	89	30	99	Inlet/Outlet
Model	Input (P1)	Output (P2)	Head (m)							Capa	city in I	itres/n	n inut e,	gallons/	'hour								BSPP
XF171	0.64	0.45	16	175	2310	150 19	30	120 1584	90	1188	35	462											1″F / 1″M
XF221	1.1	0.78	20	225	2970	203 26	30	177 2336	150	1980	118	1558	72	950									1″F / 1″M
XF92	0.84	0.58	28	93	1228	90 11	38	87 1148	83	1096	75	990	64	845	50	660	32	422	12	158			1″F / 1″F
XF192	1.15	0.80	33	194	2560	181 23	39	170 2244	150	1980	139	1835	123	1624	106	1400	87	1148	66	871	33	436	1″F / 1″F
HP45-05	0.77	0.55	33	-		-		78 1029	75	990	72	950	67	884	61	805	55	726	46	607	33	436	11/₄″F / 1″F

ELECTRIC TRANSFER PUMPS

FLOW (lpm)

Stainless Steel Transfer Pumps

The NEW XF111SS and XF211SS single stage centrifugal pumps feature simplicity of design coupled with an all stainless steel pump end. Teflon neck rings provide long lasting performance and excellent suction capability. The NEW XF92SS, XF192SS and XF242SS twin impeller centrifugal multistage pumps add that extra pressure you often need in a high efficiency package. These super quiet pumps feature all stainless steel impellers and casings with Davey's unique patented floating neck ring arrangement for outstanding performance.

The new single and two stage models are ideal for pumping cold and even hot water* for a variety of applications: · Domestic water supply

- Washing systems
- Irrigation
 Pressure boosting Water Transfer Heat exchanges

*Up to 85°C dependent upon model. Refer datasheets for full details.

Stainless Steel Jet Pumps

The NEW compact JY single stage jet assisted centrifugal pumps are ideal pumps for a variety of consumer applications, like:

- Transferring water to elevated storage tanks
- Boosting low pressure mains water supplies
- Providing pressure for domestic water usage in homes
- Operating small scale irrigation systems

The NEW JY models feature high quality 304 stainless steel pump casing and impeller for long reliable life.

XFSS & JY SERIES PERFORMANCE

									To	tal Head	metres/f	eet						Connection
	Motor	(kW)	Impellers	10	32.8	15	49.2	20	65.6	25	82	30	98.4	35	114.3	40	131.2	Inlet/Outlet
Model	Input (P1)	Output (P2)	(stages)						Capacity in	litres/	minut e, g	allons/h	our					BSPP
XF111SS	1.1	0.75	1	161	35.4	134	29.5	94	20.7	31	6.8							1¹/₄″F / 1″F
XF211SS	1.1	0.75	1	203	44.7	176	38.7	136	29.9	72	15.8							1¹/₄″F / 1″F
XF92SS	0.75	0.54	2	103	22.7	83	183	62	13.6	34	7.5							1¹/₄″F / 1″F
XF192SS	1.1	0.78	2	170	37.4	143	31.5	116	25.5	86	18.9	26	5.7					1¹/₄″F / 1″F
XF242SS	1.44	1.08	2	211	46.4	183	40.3	155	34.1	125	27.5	58	12.8					1¹/₄″F / 1″F
JY350	0.78	0.53	1 jet assisted			37	8.1	26	5.7	15	3.3	8	1.8	2	0.4			1″F / 1″F
JY450	1	0.7	1 jet assisted			43	9.5	36	7.9	26	5.7	18	4.0	12	2.6	6	1.3	1″F / 1″F

ELECTRIC TRANSFER PUMPS

Dynaflo[®] HS

6200/6210

Dynaflo® HS Stainless Steel Horizontal Multistage Pumps

For applications requiring higher pressure with quiet and reliable operation, the Dynaflo HS Series offers the proven advantages of Davey quality coupled with Davey innovation.

Available in three and four stage models with pressures up to 50 metres, and flows up to 100 ipm, the Dynaflo HS models are ideal for a wide range of applications including:

- High tank filling
- Sprinkler system supply
- Mains boosting (subject to local regulations)
- Industrial water supply
- Household pressure systems refer page 7 for details

Dynaflo[®] 6000 Series Models Designed for medium flow applications, Davey Dynaflo

pumps are ideal for such applications as dairy washdown, spearpoints, small irrigation systems and general water transfer.

Manufactured to the highest standards, Davey Dynaflo pumps provide high capacity, efficient and reliable water supply for applications which demand flows up to 457 litres/min, or heads up to 41metres.

Dynaflo models are built to last and come complete with performance matched IP56 TEFC (Totally Enclosed Fan Cooled) Davey motors. Davey 6200 and 6210 Dynaflo pumps utilise a highly corrosion resistant Noryl pump body. 6220 and 6230 Dynaflo models utilise the strength of cast iron to handle even higher pressure duties, with a special internal and external powdercoat finish for added corrosion protection.

					Total Head metres /feet							Connection								
	Motor	(kW)	Impellers	10	32.8	15	49.2	20	65.6	25	82.0	30	98.4	35	114.3	40	131.2	45	147.6	Inlet/Outlet
Model	Input (P1)	Output (P2)	(Stages)						Capaci	ity in li t	tres/mi	nute G	allons pe	r hour						BSPP
HS50-05L	0.74	0.53	3	69	15.2	61	13.4	51	11.2	49	10.8	27	5.9	4	0.9					1¹/₄″F / 1″F
HS50-06L	0.89	0.60	4	74	16.3	67	14.7	61	13.4	53	11.7	46	10.1	37	8.1	27	5.9	14	3.1	1¹/₄″F / 1″F
HS60-06L	0.82	0.57	3	96	21.1	85	18.7	75	16.5	60	13.2	43	9.5	18	4.0					1¹/₄″F / 1″F
HS60-08L	1.1	0.76	4	101	22.2	94	20.7	87	19.1	77	16.9	68	15.0	58	12.8	44	9.7	26	5.7	1¹/₄″F / 1″F

HS Performance

Dynaflo[®] Performance

			Max		Total Head metres/feet							Connection								
	Motor	(kW)	Total	5	16.4	10	32.8	15	49.2	20	65.6	25	82.0	30	98.4	35	114.8	40	131.2	Inlet/Outlet
Model	Input (P1)	Output (P2)	Head (m)						Capaci	ty in litr	res/mii	nute Ga	allons pe	r hour						BSPP
6200	1.57	1.0	25.5	269	3550	233	3075	193	2547	142	1874	24	317							1 ¹ /2″F / 1 ¹ /4″F
6210	2.1	1.6	31.6	314	4144	283	3735	248	3273	212	2798	167	2204	100	1320					1 ¹ /2"F / 1 ¹ /4"F
6220	3.2	2.4	38.7	356	4699	344	4540	327	4316	309	4079	280	3696	212	2798	115	1518			2"F / 11/2"F
6230	3.9	3.0	41.2	457	6032	457	6032	457	6032	454	5992	442	5834	407	5372	323	4263	17	6 2323	2"F / 11/2"F

6200 available in 1 phase only, 6210/6220 available in 1 phase or 3 phase, 6230 available in 3 phase only.

PERIPHERAL TURBINE & POND PUMPS

Peripheral Turbine Pumps

Davey's compact ES500 peripheral turbine pumps have been designed for specific uses in commercial and industrial applications such as:

- Pressure boosting
- Dishwashers
- Boiler feed
- Jacking pump, etc.

Economical and quiet, these pumps provide high pressure at temperatures up to 90°C. Solid brass liquid ends and quiet TEFC motors (rated IP44) give long and reliable operating life.

Motor kW input - $(P_1) 0.57$ Motor kW output - $(P_2) 0.37$

Dynapond Pond Pumps

Davey's Dynapond Pond Pumps are specially designed for fully submerged, 24 hour a day, 7 day a week operation.

The Dynapond is ideal for large domestic and commercial fountains and waterfalls, Koi and fish ponds, as well as recirculation applications in freshwater aquaculture.

The pump can be installed with the outlet facing vertically or horizontally, making it easier to install and conceal in your water feature.

Dynapond models feature:

TOTAL HEAD (m

- Open impeller allowing the passage of small soft solids
- Adjustable inlet strainer holes (10mm or 5mm) to control what goes through the pump
- Oil free motor, so they are safe for fishponds
- Maximum submergence of up to 3 metres
- 1¹/₄" BSP female outlet and discharge elbow for hose connection

Heig	ht (m)	Dynapond					
8 -	III		7000	8000	15000		
		l/hr	-	-	4,200		
7 -		or					
		l/hr	-	-	7,100		
6 -		or					
		l/hr	-	2,200	9,000		
5		or					
		l/hr	1,200	3,700	10,500		
4		or					
		l/hr	2,900	5,100	11,700		
3 -		or					
		l/hr	3,900	6,300	12,700		
2		or					
		l/hr	4,900	7,200	13,500		
1		or					
		l/hr	5,700	7,800	14,300		
01		_		_	\sim		
					_		

300

18000

20mm

	-	¢	S	U
÷	1		-	1
	۰.	ć.		ч
			-	-

The Davey range of engine driven self priming pumps offers you versatility for a variety of applications:

- Firefighting
- Water transfer
- Irrigation
- Boom spraying
- Agricultural spraying such as sheep jetting
- Deep well jet pump applications

Depending on the required flow and pressure, you can select which type of pump in the engine driven self priming pump range suits your needs: For easy identification, all single stage Firefighter models have YELLOW casings. Firefighter Plus two stage models have RED casings.

5 Series Firefighter[®] and Firefighter Plus

Depend on Davey to take yet another quantum leap forward with their NEW 5 Series Firefighter[®] range. These new pumps offer a host of new features to make installation, operation and maintenance easier, quicker and more dependable.

Designed with the needs of the end user in mind, the NEW 5 Series single and twin impeller models set new standards for convenience and durability.

The NEW 5 Series range also offer class leading performance and not just in the workshop. The NEW models provide superior self priming and performance at suction lifts, providing you with confidence when lifting water from a river or dam!

The NEW 5 Series also includes a larger capacity single impeller range of Firefighter[®] 9hp+ models.

SUCTION CONFIGURATION

The pump inlet is incorporated into a compact suction housing, with easy access to the suction flap valve and the other pump internals.

CHOICE OF SUCTION SIZES

The suction housing comes standard as 1¹/₂" BSP, but is available as 2" for larger horsepower models, and in NPT threads for selected markets.

LARGER CAPACITY TWIN IMPELLER CASINGS

To ensure the fastest self priming times, the new twin impeller models feature a larger suction housing.

LARGER PRIMING AND DRAIN PORTS

Not only does this make it easier to fill your pump for priming, but also makes it easier to drain and flush the pump out after use.

BAYONET STYLE PRIMING AND DRAIN PLUGS

Incorporating a decompression function and a safety retention system, these new plugs make it easy to safely access the priming and drain ports.

With no tools required, a simple 90 degree twist of the wrist and the plug can be released.

INTEGRAL HANDLE

Conveniently positioned and comfortable to grip, the new handle saves on weight without compromising strength.

FOUR-WAY DISCHARGE

Allows for easy installation and more connection options with $2 \ge 1^{1}/2^{n}$ and $2 \ge 1^{n}$ outlets. Standard on all single and twin impeller models up to 7hp.

THREE-WAY DISCHARGE

Allows for easy installation and more connection options with 1 x 2" and 2 x 1" outlets, plus a huge 1¹/₂" priming port which can also be used as a discharge port. This discharge is standard on all 9hp, 10hp and 13hp models.

DUAL FLOATING NECK RINGS

Patented independently floating neck rings are fitted both front and rear of the impeller to ensure optimal pump performance is maintained, even after weeks of abuse.

THRUST BALANCE

All centrifugal pumps are capable of subjecting axial (parallel to the shaft) thrust to the engine. The higher the pressure the greater thrust potentially created, which can shorten engine life. The NEW 5 Series Firefighter[®] range incorporate a thrust balance drum and pressure equalization holes in the impeller. This special design helps extend engine life.

PATENTED CLAMPED IMPELLERS

Davey's unique clamped impeller design allows for optimum impeller shape and internal surface finish for increased performance. Amazingly this patented feature also makes it possible to quickly disassemble the impeller/s, making cleaning accidental obstructions easier.

HIGH QUALITY EPOXY POWDER COATED CASINGS

Not only do the NEW 5 Series Firefighter[®] pumps feature the high quality Davey powder coat finish on the outside, they also have the same high quality finish on the inside! This resilient finish helps to extend the life of your NEW Davey pump.

FIREFIGHTER[®]

SINGLE IMPELLER 5.5 TO 6.5hp PERFORMANCE

FIREFIGHTER[®] PLUS TWIN IMPELLER 5.5 TO 6.5hp PERFORMANCE

Firefighter[®] 9hp + Single Impeller 9 to 13hp Performance

FIREFIGHTER[®] PLUS 9hp + Twin Impeller 9hp to 13hp Performance

		Overhead Valve Petrol Engine Options								
		Briggs & Strattor	n		Hor	nda		Engine	Options	
Model Choices	6hp Vanguard	9hp Vanguard	13hp Vanguard	5.5hp GX160	6.5hp GX200	9hp GX270	13hp GX390	7hp L70A/E	10hp L100A/E	
Firefighter Single Impeller	5160B	5190BE	5113BE	5155H	5165H 5165HE	5190HE	5113HE	5170Y 5170YE	5110YE	
Firefighter Plus Twin Impeller	5260B	5290BE	5213BE	5255H	5265H 5265HE	5290HE	5213HE	5270Y 5270YE	5210YE	
Max rated hp @ 3600 rpm	6	9	13	5.5	6.5	9	13	7	10	
Displacement (cc)	182	296	391	163	196	270	389	296	406	
"Out of box" governed max engine speed @ no load		4200 rpm			3800	rpm		3000 rpm		
Fuel tank (litres)	4	6	7.9	3.6	3.6	6	6.5	3.5	5.5	
Running time per tank @ full load @ 3600 rpm	1.93 hours	1.9 hours	1.7 hours	1.73 hours	2.05 hours	1.9 hours	2 hours	1.6 hours	2.5 hours	
Low oil protection	YES							N	0	
Exhaust spark arrestor YES NO - optional from engine dealers	YES NO									
dBa @ 3600 rpm @ full load	75 @ 4m	79 @ 4m	81.5 @ 4m	85 @ 4m	86 @ 4m	79 @ 7m	78 @ 7m	80.5 @ 7m	82.5 @ 7m	

3" Water Mover models

Davey's 3" Water Mover models are designed to handle those high volume pumping jobs with ease. Featuring heavy duty close grain cast iron impellers and diffusers, with large open vanes, these robust pumps can even handle soft solids in suspension.

They suit applications such as:

- Water harvesting Drainage
- Tanker filling and emptying
- Grey or septic water disposal

Bare Shaft Pumps

The Davey range of bare shaft pumps feature the new twin impeller high pressure model 5250P and the single impeller model 5150P. These self priming pumps can be direct coupled or belt driven by petrol or diesel engines, an electric motor or a stationary tractor. All models feature high grade aluminium casings and stainless steel shafts for high corrosion resistance. These units are ideal for tank filling, irrigation, firefighting and more.

5150P Bare Shaft Single Stage

SINGLE STAGE BARE SHAFT PUMP PERFORMANCE

TWIN STAGE BARE SHAFT PUMP PERFORMANCE

Borehole Applications

Firefighter[®] and Firefighter[®] Plus models can be fitted with a deep well injector to draw water from bores where no electrical power is available.

Three different jet/venturi kits are available for use with either a 4" or 5" injector body kit.

The performance shown is indicative for a 5155H at full speed or a 5255H at 3000rpm throttle setting.

Jet/Venturi Kit No. 29429 & 4 Inch Injector Body No. 23300

Jet/Venturi Kit No. 29468 & 4 Inch Injector Body No. 23300

Time o mm **Davey Deep Well Pressure System** iti ne

Jet/Venturi Kit No. 29569 & 5 Inch Injector Body No. 23301

RECOMMENDED MINIMUM DEEP WELL Firefighter Pipe Sizes

Model Injector	Injector Body No.	Drive Pipe	Suction Pipe
29429	23300	1¹¼″ Class B poly	11/2" Class B poly or 50mm PN6 poly
29468	23300	40mm PN6 poly	2" Class B poly
29569	23301	11/2" Class B poly or 50mm PN6 poly	63mm PN6 poly

If used in difficult installations consult your Davey dealer for technical advice and assistance.

CIRCULATORS & EFFLUENT PUMPS

Circulator Pumps

Davey circulator pumps are ideal for domestic heating applications, secondary hot water services, air conditioning or cooling systems.

The advanced multi-speed, canned motor, provides long, reliable operating

life. The pump has a maximum operating temperature of 120°C and a maximum service pressure of 1000 kPa.

To make it easier to install, Davey offers five different sizes, as well as including the unions and gaskets with each pump.*

SXM 32-45: Unions and gaskets ordered separately. Note: These units are not to be used for swimming pool or spa applications.

Mukmova - Effluent Pump

Features:

- Thick section cast iron pump body
- Fast self priming capability
- Can be made automatic with float switch
- Large inspection port with quick release toggles
- Shims fitted on inspection port for optimising suction capabilities
- Can be installed outside pit
- Totally enclosed fan cooled motor
- Two models available with single phase (240/480v) or three phase (415v) motor

MUKMOVA PERFORMANCE

		Total	Head	Out	put								
		Metres	Feet	Litres/Min	Gal/Min								
		10	33	492	108								
		12	39	435	95								
0	r kW	14	46	365	80								
/	Output	16	52	292	64								
	(P2)	18	59	215	47								
	2.1	20	66	130	28								
	2.0	Note: Pump o	utput capacities	are based on cle	ean water.								

Note: Pump output capacities are based on clean water. Performance may be lower when pumping dirty water

Mot

Input.

(P1)

2.6

2.4

4" SUBMERSIBLE BOREHOLE PUMPS

Submersible J & SR Series

Slimline submersible borehole pumps suitable for 4" or larger boreholes. Manufactured from corrosion and abrasion resistant materials. Close coupled to a submersible electric motor.

Applications

Irrigation

Stock watering

De-watering

Features

- Domestic water supplyTurf watering
- Precision stainless steel outer (2mm thick)
- Stainless steel thrust rings, lead guard and suction screen
- Standard 2 pole speed motor (2850 rpm)
 - Abrasive resistant internal shaft bearings
 - · Cast stainless steel discharge head with in-built check valve

Benefits

•

•

I760D

- Proven and reliable design for Australian conditions
- Standard speed operation for long life
- · Manufactured from high quality corrosion resistant materials
- Teflon impregnated polyester staging, in models up to 60 lpm, allows the J Series to handle low yielding bores and sandy well conditions
- 25, 40 & 60 lpm models feature independently floating centrifugal impellers to provide easy starting and trouble free long life, automatically adjusting to the pumping conditions of each application
- 80, 110, 160, 250 & 300 lpm models feature locked stack partial mixed flow polycarbonate impellers with open waterways to provide trouble free starting and longer operating life

FLOW

6" SUBMERSIBLE BOREHOLE PUMPS

SS 6" Series

Advanced stainless steel manufacturing technology results in state of the art 6" submersible pumps.

Applications

- Water supply domestic, rural & industrial
- Turf watering & irrigation
- Mining applications
- Firefighting systems
- Agricultural & farming

Features

- Full 316 stainless steel construction
- Unique sand handling design
- Easy to install and service
- Fluted SiC/Nitrile bearings and floating PTFE neck rings
- Check valve assembly incorporated into discharge head
- Lifting lugs in-built to pump head

Benefits

- Full 316SS construction for excellent corrosion & abrasion resistance
- Floating teflon neck ring allows abrasive handling & wear resistance
- Simple hydraulic design ensures all parts are easily dismantled minimising down time
- Pump can work continuously both vertically and horizontally
- Flexible design allows removal of impellers to match duty requirements
- High efficiency impeller designs incorporating radial flow impellers for models SS18 & SS27 and axial flow impellers for models SS45 & SS60, providing maximum efficiency, reducing power consumption and overall running costs.

Specifications

- Capacities up to 80m³/hr
- Heads to 450m
- Coupling with NEMA standard motors
- Water temperature up to 90°C*
- Maximum sand handling 50 grams/m³
- * For use with 6" Franklin HI-Temp motor range.

6'' SUBMERSIBLE BOREHOLE PUMPS

Unless stated, all motor frames are to suit Nema 6" motor. *Units are fitted with 4" motor adaptor to suit 4" Nema framed motors.

	Pump Stages / Motor Power kW (P2)											
Model	4	5.5	7.5	11	15	18.5	22	30	37			
SS18 Series	6*	9*	12	15/18	22/24	28/30	33/36	39/42	-			
SS27 Series	-	5*	7	11	15	19	23	27/31	33/36			
SS45 Series	-	3*	5	7	10	12	15	18/20	25			
SS60 Series	-	3*	5	7	10	12	14	18	24			

8" SUBMERSIBLE BOREHOLE PUMPS

SS 8" Series

Advanced stainless steel manufacturing technology results in state of the art 8" submersible pumps.

Applications

- Water supply domestic, rural & industrial
- Turf watering & irrigation
- Mining applications
- Firefighting systems
- Agricultural & farming

Features

- Full stainless steel construction
- Unique sand handling design
- Easy to install and service
- Fluted SiC/Nitrile bearings and floating PTFE neck rings
- Check valve assembly incorporated into discharge head

Benefits

- Full 316SS construction for excellent corrosion & abrasion resistance
- Floating neck ring allows abrasive handling & wear resistance
- Simple hydraulic design ensures all parts are easily dismantled minimising down time
- Pump can work continuously both vertically and horizontally
- Flexible design allows removal of impellers to match duty requirements

Specifications

- Capacities up to 120m³/hr
- Heads to 500m
- · Coupling with NEMA standard motors
- Water temperature up to 50°C
- Maximum sand handling 50 grams/m³

	Pump Stages / Motor Power kW (P2)												
Model	2	3	4	5	6	7-8	9-11	12	13-14	16-21	22-24		
SS78 Series	7.5	11	15	18.5	22	30	37	45	55	75	93		
	Pump Stages / Motor Power kW (P2)												
Model	2	3	4	5	6-7	8-9	10	11-13	14-17	18-21	22-23		
SS97 Series	9.3	15	18.5	22	30	37	45	55	75	93	110		

SUMP PUMPS

pagine prio	pointe DCAD	him Impair	perminering Did hor	Denning market Blanger Muddels	yortex mi	Single Channes (S)	a limate	Grinder (G)	Modals
Removal of clean nuisance water	1	1	1	1	1	1	-	-	-
Light duty fountains	1	1	1	1	1	1	-	-	-
Continuous fountain usage	×	1	1	×	1	1	1	-	-
Grey Water with nil or few small soft solids e.g. septic tank pumpouts	×	1	1	×	1	1	1	1	1
Dirty Water with less than 1% small hard solids – some wear should be expected	×	1	1	×	1	1	1	×	×
Water with up to 10% soft solids in suspension – sized 80% of discharge	×	×	×	×	×	1	1	1	1
Water with medium volumes of hair in suspension	×	×	×	×	×	1	×	1	×
Water with stringy materials in suspension	×	×	×	×	×	×	×	1	1
Semi-screened sewage	×	×	×	×	×	1	1	1	1
Raw sewage including sanitary products	×	×	×	×	×	×	×	×	1
Models available - kW Rating		✓Suitable Sel	ection		🗶 Not Reco	mmended			
Automatic Single Phase 220/240 V	0.1	0.4	0.6	0.1	0.15 to 0.75	0.15 to 0.75	0.75	0.75	-
Manual* Single Phase 220/240 V	0.1	0.4	0.6	0.1	0.15 to 0.75	-	-	-	1.2 to 1.5
Manual* Three Phase 415 V	-	_	-	-	0.75	0.75	0.75	0.75	1.2 to 1.5

*Automatic float switches & control boxes available

Note: All single phase models up to and including 0.6kW come complete with a 10amp 3 pin plug

DEWATERING

Double Cased Stainless Steel Sump Pump

The new DCS40 models are ideally suited to operate in partially submerged installations for long periods. The double case design forces all the pumped water past the motor, thus ensuring cool operation.

The high quality, stainless steel shell retains its good looks and function for added satisfaction.

SUMP PUMPS

Davey offers a wide selection of submersible Sump Pump models to suit commercial, rural and domestic applications.

Davey Sump Pumps are tough suckers, with robust designs for long service life, featuring:

- High grade stainless steel and cast iron construction for long life
- Compliance with Australian and International Electrical Requirements for peace of mind
- In-built thermal overload protection to safeguard the motor
- Multiple level shaft seals for more security and endurance
- All models have a first stage lip seal to reduce the ingress of abrasives to the main shaft seal/s, plus:

- 100 & 150 watt models have single Silicon Carbide hard-face seals in an oil bath.

- All other models have double mechanical seals with Silicon Carbide hard-face seals pump side and Carbon/Ceramic seals motor side, running in a large volume oil bath

Davey offers a range of controls to make installation easier.

Automatic float switches are available on models up to 750 watt single phase. Selected single phase models are also available as manual switched models. Manual switched models can be fitted with a variety of control systems, including multiple pump controllers - ask your Davey dealer which model suits your application best.

Davey Slide Rail kits make installation and removal for servicing easier.

Davey slide rail kits are available to suit Vortex, Single Channel, Cutter and Grinder models. The rail kits allow simple connection or disconnection to permanent pipework in the pit or well. A slide rail system is highly recommended in commercial, grey water or black water installations as it can save time and overcome some OH&S concerns during routine maintenance.

DT375/K

DT15S/K

FLOW

500

110

DT22S/k

1500

330

1000

220

ft

80

70 - 20

60

50 - 15

40

20 - 5

10

0 ⊥ 0 Ipm

m

25

30 - 10

TOTAL HEAD

D755/K

DT08S/K

lpm 0 ۲ g/min 0

GRINDER

VERTICAL MULTISTAGE PUMPS

V3 / 6 / 8 Series

Vertical mounted in-line multistage centrifugal pumps with all stainless steel hydraulic parts, available from 5 up to 20 stages

Applications

- Water supply domestic, rural & industrial
- Pressure boosting
- Agriculture and farming
- Turf watering and irrigation
- Commercial high pressure washing
 - water treatment
 - boiler feed

Features & Benefits

- All hydraulic parts, made from stainless steel, for corrosion resistance and longer pump life
- Thick impeller sealing rings between stages ensure insensitivity to thermal expansion and eliminates risk of seizing up
- Vertical axis with in-line suction and discharge ports, enabling easy installation with minimum floor space required
- Cast iron pump head providing rigid, motor mounting assembly
- In-built, oversized thrust bearing for longer motor bearing life no upthrust transferred to the motor and enabling easier assembly
- IP55 motor rating for outdoor applications (standard motors without modification)
- Raised lower bearing for longer life
- Larger shaft diameter minimising deflection
- Tungsten carbide intermediate bearing to control and eliminate vibration and stabilise the rotor with a large number of stages
- O-ring case gaskets for ease of disassembly and re-assembly, preventing downtime whilst performing maintenance

VERTICAL MULTISTAGE PUMPS

V18 / 36 / 54 Series

Vertical mounted in-line multistage centrifugal pumps with stainless steel hydraulic parts, available from 2 up to 14 stages

Applications

- Water supply domestic, rural & industrial
- Pressure boosting
- Agriculture and farming
- Turf watering and irrigation
- Commercial high pressure washing and water treatment
- Boiler feed

Features & Benefits

- · Major hydraulic parts, made from stainless steel, for corrosion resistance and longer pump life
- Thick impeller sealing rings between stages ensure insensitivity to thermal expansion and eliminate risk of seizing up
- Vertical axis with in-line cast iron suction and discharge housing, enabling easy installation with minimum floor space required
- · Cast iron pump head providing rigid, motor mounting assembly
- In-built, oversized thrust bearing for longer motor bearing life no upthrust transferred to the motor and enabling easier assembly
- IP54 motor rating for outdoor applications (standard motors without modification)
- Raised lower bearing for longer life
- Larger shaft diameter minimising deflection
- Tungsten carbide intermediate bearing to control and eliminate vibration and stabilise the rotor with a large number of stages
- O-ring case gaskets for ease of disassembly and re-assembly, preventing downtime whilst performing maintenance

ISO spec BARESHAFT CF SERIES

Davey ISOspec® CF Series bareshaft pump range has been designed to international standard **ISO2858** ensuring a sturdy & reliable, long lasting high performing product that consumers have come to depend on from Davey. ISOspec® Series pumps are interchangeable with other similar pumps, conforming to the same standards.

Operating Conditions

Maximum flow	900m³/hr
Maximum total heads	160m
Liquid temperature	-15 to 140°C

Bronze wear rings - fitted as standard, replaceable front & rear wear rings with optional materials, for a trouble free lifecycle.

Bronze impeller - in a closed design is fitted as standard. This helps to prevent corrosion in stationary or inactive situations. Cast 304SS or 316SS are available on request. The use of 3-D solid model (CAD) Computer Aided Design and (CFD) Computational Fluid Dynamics ensures **high** efficiencies, reducing overall running costs. Impeller diameters can be trimmed to suit specified performance.

Pump casing - high efficiency cast iron volute casings, with flanges rated to PN1.6MPa (16bar), drilled to AS2129, Table E. Material: 316SS.

Casing o-ring - re-usable o-rings in Nitrile for ease of re-assembly (optional materials available).

Back pull-out design - allowing for easy removal of rotating element without disturbing the pipe work, lagging, motor or pump volute casing. This is proven to reduce downtime whilst performing routine maintenance.

Enlarged shaft - reduces shaft deflection. Standard in 420SS and as an option in 316SS. Tapered & keyed shaft design allowing ease of removal in maintenance & positive locking whilst in operation.

Shaft seal - single, high quality John Crane or approved equivalent mechanical seal with **carbon vs ceramic** fitted as standard with other options such as silicone vs silicone or high temp also available.

Tappings - convenient suction & discharge pressure gauge tappings plus volute drain, fitted as standard to all ISOspec[®] Series pumps.

Bearings - heavy duty SKF or approved equivalent, greased for life, reducing maintenance. Housed within removable bearing cap cover assembly, protected by a quality manufactured lip seal reducing ingress of moisture or foreign matter.

Bearing housing - Robust / heavy duty, manufactured in high strength cast iron providing trouble free life cycle.

CF Bareshaft Pump CM Motor Pump on Baseplate

ISO Spec MOTOR PUMP CM SERIES

Davey ISOspec® CM Series motor pump range has been designed to international standard **ISO2858** ensuring a sturdy & reliable, long lasting high performing product that consumers have come to depend on from Davey. ISOspec® Series pumps are interchangeable with other similar pumps, conforming to the same standards.

All standard motors are MEPS compliant ensuring minimum efficiency requirements to AS/NZS 1359.5.2000.

Operating Conditions

Maximum flow	375m³/hr	Liquid temperature	-15 to 140°C
Maximum total heads	160m	Operating pressure	16 Bar

Bronze wear rings - fitted as standard, replaceable front & rear wear rings with optional materials, for a trouble free lifecycle.

Bronze impeller - in a closed design is fitted as standard. This helps to prevent corrosion in stationary or inactive situations. Cast 304SS or 316SS are available on request. The use of 3-D solid model (CAD) Computer Aided Design and (CFD) Computational Fluid Dynamics ensures high efficiencies, reducing overall running costs. Impellers are dynamically balanced preventing premature bearing failure and diameters can be trimmed to suit specified performance.

Pump casing - high efficiency cast iron volute casings, with flanges rated to PN1.6MPa (16bar), drilled to AS2129, Table E. Material options: Cast Iron, Bronze, 304SS or 316SS.

Casing o-ring - re-usable o-rings in Nitrile for ease of re-assembly (optional materials available).

Back pull-out design - allowing for easy removal of rotating element without disturbing the pipe work, lagging or pump volute casing. This is proven to reduce downtime whilst performing routine maintenance.

Adaptor housing - heavy duty, flanged to IEC accepting AS 1359 standard designed motors.

Stub shaft - standard in 316SS, attached via a heavy duty muff coupling assembly. Tapered & keyed shaft design allowing ease of removal in maintenance & positive locking whilst in operation.

Shaft seal - single, high quality John Crane or approved equivalent mechanical seal with **carbon vs ceramic** fitted as standard with other options such as silicone vs silicone or high temp also available.

Tappings - convenient suction & discharge pressure gauge tappings plus volute drain, fitted as standard to all ISOspec[®] Series pumps.

Bearings - heavy duty SKF or approved equivalent, greased for life, reducing maintenance. Protected by a quality manufactured lip seal reducing ingress of moisture or foreign matter.

Suitable Applications for ISOspec® Pumps

Water Supply

Commercial irrigation, booster stations, municipal water supply, flood irrigation, general transfer.

Industry

Cooling tower transfer, refrigeration systems, commercial fountains, condensate recovery, dairy wash down packages.

Environmental

Dust suppression in mining & quarry applications, fume scrubbers for odour control, water treatment transfer & filtration.

Leisure

Water circulation in large aquatic centres, backwash filtration in commercial pools, water features & commercial fountains.

Building Services

Commercial heating, air conditioning systems, pressure boosting, cooling tower & fire service applications.

Pumped Liquids

Non aggressive & non combustible liquids. Clean low viscous liquids free of fibres or particles.

ISO Spec PACKAGED PUMP SETS

High quality, fully packaged diesel driven ISOspec® pumpset.

Operating Limits

Flow to	450m³/hr
Maximum total head	160m
Liquid temperature	1 to 95∘C
Operating pressure	16 Bar

Applications

- Irrigation
- Water supply
- Dewatering

Features & Benefits

- Driven via Yanmar Diesel engine, fully mounted on a purpose built, heavy duty steel skid base allowing easy on site installation.
- Easy to view control panel and engine protection kit incorporating :-
 - Rev tachometer
 - Low oil pressure
 - High water temperature
 - Low radiator fluid level
 - 24 hour timer
 - Pump high/low liquid level switch loss of prime
- Manual variable engine speed controller providing total pump performance control.

ISO Spec Series Range Curves

For individual CF or CM Series performance curves, please consult your local Davey dealer or download from www.davey.com.au

Packaged water pressure system consisting of a Davey stainless steel vertical multistage pump with pressure tank, adjustable pressure switch, liquid filled pressure gauge, all mounted on a common base plate.

Operating Limits

Flow to250lpm / 15m³/hrPressure heads to98mMaximum liquid temperature+70°C (tank)Maximum ambient temperature+40°C

Applications

- Household & commercial applications
- Multi-dwelling water supply system
- Turf watering & irrigation
- Water supply, boosting & transfer
- Water treatment

Features & Benefits

- Davey vertical multistage centrifugal pump with superior hydraulic design. Powered by Davey's renowned Australian manufactured IP56 TEFC motor suitable for some of the most harsh conditions.
- All hydraulic parts manufactured in stainless steel, providing corrosion protection.
- Compact in-line suction & discharge for ease of installation.
- Utilising the Davey Supercell range of captive diaphragm pressure tanks which feature a long lasting, bacteria resistant, crease free Butyl rubber diaphragm.
- Completely assembled on a galvanised common Davey base plate for easy mounting.
- Discharge manifold assembly in copper and brass, complete with isolation gate valve with an easy to read quality liquid filled pressure gauge.
- Pressure adjustment is made simple with a fully adjustable pressure switch, providing a smooth on/off operation.

Davey Monsoon packaged pump systems offer the choice and flexibility to best suit your application. An extensive choice of standard configurations is complimented by tailor made options.

Monsoon systems can be supplied utilising V Series vertical multistage pumps, M Series horizontal multistage, Dynaflo, ISOspec[®] end suction centrifugal pumps, Davey Sump Pumps and even borehole submersible models.

Flexibility of system design can allow the best combination of pumps to be chosen to ensure maximum operating range & high efficiencies are met, thereby reducing overall running costs.

Davey Monsoon systems can be built to suit your needs from one pump up to six pumps. Monsoon systems can be operated via pressure, level or temperature. They can include constant speed controls or variable frequency drives. Monsoon systems are easy to operate, allowing full system status at the press of a button.

All Davey manifolding is manufactured using stainless steel as standard, providing high corrosion properties with options of either screwed or flanged connections.

Monsoon systems are designed and assembled with the accreditation of ISO9001, giving the peace of mind you have come to expect from an all Australian company that has pioneered pumping solutions since 1934.

Monsoon 3C

System Up to three pumps

Operation

Automatically controlled depending on system duty. Pumps can be automatically rotated to ensure equal operating hours for each pump.

Pumps Up to three same or hydraulically similar pumps, maximum 110kW each pump

System includes

- Microprocessor controlled pump system with electronic pressure sensing
- All pumps operate on same pressure points to maximise performance from each pump
- Easy access menus to enable adjustment to suit any operation
- Adjustable parameters include cut-in pressure, cutout pressure, low pressure cut-out, high pressure cut-out & minimum run timer
- Status display includes system pressure, calculated flow rate, calculated total flow, hours run per pump, start meter per pump & system starts last hour
- System protection includes low-pressure protection & high pressure protection with adjustable delay timer
- Adjustable timer allows the system to be easily tuned to suit any pumping system
- Selectable automatic or manual rotation of lead pump
- Additional inputs include system pause, individual pump protection plus 8 additional, programmable inputs
- System outputs include four configurable relays

Options

- Individual pump protection, system no flow & system pause
- Operation via switched inputs floats, pressure switch
- Level or temperature control mode

Monsoon 3C Pump Set

Monsoon 3V

System Monsoon 3V controller starts and stops pumps according to information collected from a pressure transducer and compares this to the reference set point. The controller maintains the system pressure at the set point by varying the speed of the VFD pump and switching other pumps ON and OFF. When the system detects NO flow it will shut down until the pressure drops below a restart point. The controller displays real pumping intelligence and offers very high running cost savings for variable flow reticulations.

Pumps Up to three same or hydraulically similar pumps, maximum 90kW each pump

System includes

- Constant pressure control system with electronic pressure sensing
- Easy access menus to enable adjustment to suit any operation
- Adjustable parameters include cut-in pressure, set point, low pressure cut-out, high pressure cutout & minimum run timer
- Status display includes system pressure, calculated flow rate, calculated total flow, hours run per pump, start meter per pump & system starts last hour
- System protection includes low pressure protection & high pressure protection with adjustable delay timer
- Adjustable timer allows the system to be easily tuned to suit any pumping system
- Selectable automatic or manual rotation of lead pump
- Additional inputs include system pause, individual pump protection plus 8 additional inputs
- Four configurable output relays

Options

- Individual pump protection, system no flow & system pause
- Soft start manual back-up
- Soft start lag pumps
- Remote start / stop
- 7 day time clock

CASCADING VFD

The Monsoon 3V cascade system starts the first pump via the VFD and continues to accelerate until the pump reaches full speed. If the system is not at the set point the controller then cycles the VFD to the next pump and switches the initial pump to full speed. This operation continues until the set point is reached or all pumps are running. The reverse occurs as the demand reduces. One VFD and bypass contactors are supplied for this option.

LEAD LAG

The Monsoon 3V lead lag system starts the first pump via the VFD and continues to accelerate until the pump reaches full speed. If the system is not at the set point the controller starts a LAG pump to make up for the flow demand. This is typically via a soft starter. This operation continues until the set point is reached or all pumps are running. The reverse occurs as the demand reduces. One VFD and one backup soft starter per lag pump are supplied for this option.

LEAD LAG AUTOROTATE

The Monsoon 3V lead lag auto rotate system starts the first pump via the VFD and continues to accelerate until the pump reaches full speed. If the system is not at the set point the controller starts a LAG pump to make up for the flow demand. This is typically via a soft starter. This operation continues until the set point is reached or all pumps are running. The reverse occurs as the demand reduces.

This option varies from the Lead Lag by rotating the lead pump each time the system restarts. One VFD and one backup soft starter per pump are supplied for this option.

The Monsoon 3V VFD per pump system starts the first pump via the VFD and continues to accelerate until the pump reaches full speed. If the system is not at the set point the controller then cycles the VFD to the next pump and switches the initial pump to full speed. This operation continues until the set point is reached or all pumps are running. The reverse occurs as the demand reduces. One VFD per pump is supplied for this option.

USEFUL INFORMATION

Here are some common average water requirements

Shower	= 15lpm at 140kPa (20psi)	Lawn Sprinkler	= 15lpm at 140kPa (20psi)	¹ / ₂ " tap	= 12-15lpm at 140kPa (20psi)
³ / ₄ " hose & ¹ / ₄ " nozzle	= 40lpm at 210kPa (30psi)	1″ hose & ³/®″ nozzle	= 75lpm at 210kPa (30psi)	Cattle	= 30-55 litres/day
Milking cows	= 70 litres/day	Sheep	= 5-10 litres/day	Pigs	= 10 litres/day
Horses	= 55-60 litres/day	100 Chickens	= 25 litres/day		

The average water requirements, shown above, may vary due to specific application concerns, and you are recommended to discuss these with your Davey Dealer. Daily requirements should be supplied within acceptable daily running times. This will vary according to the nature of the application.

Suction Lift

Pumps do not actually suck; rather, pumps create a partial vacuum into which atmospheric pressure pushes water via the suction pipework.

There are a number of factors which affect suction lift:

- ALTITUDE: As altitude increases, atmospheric pressure decreases, thus exerting less "push" on the water entering the pump suction.
- PUMP SUCTION PERFORMANCE: Generally, the higher the flow rate from a pump, the less the partial vacuum created by that pump.
- WATER TEMPERATURE: The higher the water temperature, the more likely it is to boil when exposed to a partial vacuum, thus reducing suction lift.
- FRICTION LOSS: Friction loss in the suction pipe reduces the vertical lift possible.

In practical terms, a maximum suction lift of 6.7 metres at sea level is common, but all of the items above will reduce this figure. Pump performance tables and the tables attached are a good guide. Your Davey Dealer can assist with assessment of suction lifts.

			Water Temp	Suction Lift
			J°	Reduction - Metres
Elevation	Max. Practical	Absolute atmospheric	15°	0
	Suction Lift	pressure (cold water)	20°	0.06
Sea Level	6.7m	10.35m	30°	0.22
500m	6.1m	9.75m	40°	0.52
750m	5.8m	9.46m	50°	0.98
1000m	5.5m	9.19m	60°	1.73
1500m	5.0m	8.64m	70°	2.85
2000m	4.5m	8.13m	80°	4.51

Imperial lpm m³/hr gpm | gph 7.6 0.13 0.45 1.7 100 0.17 10 0.60 16.7 0.28 3.7 45.5 0.76 10 2.73 601 3.60 60.0 13.2 1 793 75.7 1.26 4.54 16.7 1000 83.3 1.39 5.00 18.3 1101 Pressure/Head Conversion Feet Metres kPa Bar Head PSI 9.81 0.10 3.28 1.42 98.1 10.0 0.98 32.8 10.2 100 33.4 15.2 149.5 1.5 50.0 299.0 3.0 100 30.5 354.4 35.2 3.5 115.5 690.8 6.9 231.0 70.4 100 999.6 10.0 101.9 334.2 1447 · Conv

Flow Conv

Litres	Metres	Gals	Gals	Feet
1	0.001	0.22	0.264	1 0.0353
1000	1	220	264	35.3
4.546	0.0045	1	1.2	0.1605
3.785	0.0038	0.833	1	0.1337
28.32	0.0283	6.23	7.48	1
	Len	gth Conve	ersion	
Inch	Foc	ot 🛛 Y	/ard	Metres
1	0.0	8 0	.028	0.025
12.0	1	().33	0.305

1.09

3 00

CALCULATING PUMP POWER

CALCULATING SUCTION LIFT

Hs = Pa - NPSHR - Pvap Safety							
Hs	Maximum suction lift including friction loss in suction pipe						
Ра	Absolute atmospheric pressure at site						
NPSHR	NPSH required by pump at specific flow rate						
Pvap	Vapour pressure of liquid with specific temperature						

Variable Speed Performance

Changing the speed of a pump changes the flow and pressure output of the pump as well as the power required by the pump to deliver the new duty point.

Flow (Q) changes directly proportional to speed (N) change Head / pressure (H) changes proportional to speed change squared Power changes (P) proportional to speed change cubed

 $Q_1 / Q_2 = N_1 / N_2$

 $H_1 / H_2 = (N_1 / N_2)^2$

 $P_1 / P_2 = (N_1 / N_2)^3$

 Q_1 / $H_1/$ P_1 are current flow, head & power at speed N_1

 Q_2 / H_2 / P_2 are the new flow, head & power at speed N_2

Water Power (kW) = Flow (lpm) x Head (m) / 6122.4 Pump Power (P₂, kW) = Water Power / Pump Efficiency %

Input Power (P₁, kW) = Pump Power / Motor Efficiency %

USEFUL INFORMATION

Pipe Friction

Pipe friction is the resistance to flow caused by the pipe. As a general principle, it is better to use the largest practical pipe size to avoid losses in pump performance.

Note: Flow rates for which friction loss has not been calculated involve velocities which may cause water hammer.

Flo	v In													Friction	Loss f	or Poly M	Pipe - edium l	20mm Densitv	to 63n Polvth	nm (m/ ene Pii	/100 m be	ietres c	of pipe))						
Litres/	Gak./		Rural Class B Pipe PE80/PN8								PE80/PN10				PE80/PN12.5				PE80/PN16											
min.	hr.	³ / ₄ "	1″	1 ¹ /4"	1 ¹ / ₂ "	2″	20mm	25mm	32mm	40mm	50mm	63mm	20mm	25mm	32mm	40mm	50mm	63mm	20mm	25mm	32mm	40mm	50mm	63mm	20mm	25mm	32mm	40mm	50mm	63mm
10	132	2.7	0.7	0.2	0.1	-	3.9	1.1	0.3	0.1	-	-	4.5	1.4	0.4	0.1	-	-	5.3	1.8	0.5	0.2	0.1	-	6.8	2.2	0.7	0.2	0.1	-
20	264	9.8	2.4	0.8	0.3	0.1	14.2	4.0	1.2	0.4	0.1	-	16.4	5.1	1.5	0.5	0.2	0.1	19.0	6.4	1.8	0.6	0.2	0.1	24.4	8.0	2.4	0.8	0.3	0.1
30	396	20.8	5.1	1.7	0.7	0.2		8.5	2.6	0.9	0.3	0.1		10.7	3.2	1.0	0.4	0.1		13.6	3.8	1.3	0.4	0.1		17.0	5.2	1.7	0.6	0.2
40	528		8.7	2.9	1.2	0.3			4.5	1.5	0.5	0.2			5.4	1.7	0.6	0.2			6.5	2.2	0.8	0.2			8.8	2.9	1.1	0.3
50	660		13.2	4.5	1.8	0.5			6.8	2.3	0.8	0.3			8.1	2.6	0.9	0.3			9.8	3.4	1.1	0.4			13.3	4.4	1.5	0.5
60	792		18.5	6.2	2.6	0.6			9.5	3.2	1.1	0.4			11.4	3.7	1.3	0.4			13.7	4.8	1.6	0.5			18.0	6.2	2.0	0.7
80	1056		30.1	10.6	4.4	1.1				5.5	1.8	0.6				6.3	2.3	0.7				8.1	2.7	0.9				10.5	3.5	1.2
100	1320			16.1	6.6	1.6				8.3	2.7	0.9				9.5	3.4	1.1				12.2	4.1	1.3				15.9	5.3	1.7
120	1584				9.3	2.3					3.8	1.3					4.8	1.5					5.8	1.9					7.4	2.4
140	1848				12.3	3.0					5.1	1.7					6.4	2.0					7.7	2.5					9.8	3.2
160	2112					3.9					6.5	2.2					8.1	2.6					9.8	3.2					12.6	4.2
180	2376					4.8						2.7						3.3						3.9						5.2
200	2639					5.9						3.3						4.0						4.8						6.3
220	2904					7.0						3.9						4.7						5.7						7.5
240	3168					8.2						4.6						5.6						6.7						8.8
250	3300					8.9						5.0						6.0						7.2						9.5

							Friction	Loss for Po	ly Pipe (m/	'100 metres	s of pipe)							
	Flow Rate		25mr	n O.D.	0.D. 32mm 0.D.		40mm 0.D.		50mm 0.D.		63mr	n O.D.	75mr	n O.D.	90mr	n O.D.	110mm 0.D.	
lps	Ipm	m³/hr	PN 6.3	PN 12.5	PN 6.3	PN 12.5	PN 6.3	PN 12.5	PN 6.3	PN 12.5	PN 6.3	PN 12.5	PN 6.3	PN 12.5	PN 6.3	PN 12.5	PN 6.3	PN 12.5
0.2	12	0.72	2.12	2.97	0.56	0.90	0.02	0.32										
0.5	30	1.80	10.53	14.83	2.78	4.45	0.86	1.58	0.27	0.55								
0.8	48	2.88	24.24	34.17	6.37	10.20	1.97	3.62	0.61	1.25								
1.0	60	3.60			9.46	15.17	2.92	5.38	0.91	1.85	0.33	0.61	0.14	0.26				
1.6	96	5.76			21.88		6.73	12.41	2.08	4.25	0.75	1.13	0.33	0.49				
2.0	120	7.20					10.02	18.50	3.10	6.33	1.11	2.07	0.48	0.89	0.20	0.37		
3.0	180	10.8							6.39	13.07	2.29	4.27	0.99	1.83	0.42	0.76	0.16	0.29
4.0	240	14.4							10.70		3.82	7.15	1.65	3.05	0.69	1.27	0.27	0.49
5.0	300	18.0									5.70		2.46	4.55	1.03	1.89	0.40	0.72
6.0	360	21.6									7.92		3.42	6.32	1.43	2.63	0.55	1.00
7.0	420	25.2											4.51		1.88	3.46	0.72	1.32
9.0	540	32.4											7.09		2.96	5.45	1.14	2.07
10.0	600	36.0													3.58	6.59	1.37	2.50
15.0	900	54.0															2.85	5.20
20.0	1200	72.0															4.80	

						Frictio	n Loss for P	/C Pipe (m/	100 metres	of pipe)						
	Flow Rate		25r	nm	32mm		40mm		50	mm	80r	nm	100	Imm	1501	nm
lps	lpm	m³/hr	PN 9	PN 12	PN 9	PN 12	PN 9	PN 12	PN 9	PN 12	PN 9	PN 12	PN 9	PN 12	PN 9	PN 12
0.2	12	0.72	0.43	0.49	0.14	0.16	0.08	0.42								
0.5	30	1.80	2.15	2.40	0.70	0.80	0.37	0.97	0.13	0.14						
0.8	48	2.88	4.91	5.50	1.61	1.82	0.84	1.43	0.29	0.33						
1.0	60	3.60	7.29	8.16	2.38	2.70	1.24	3.30	0.42	0.48	0.07	0.08				
1.6	96	5.76	16.85	18.87	5.49	6.23	2.86	4.90	0.97	1.11	0.15	0.18				
2.0	120	7.20			8.17	9.27	4.25	10.12	1.42	1.65	0.23	0.26	0.07	0.05		
3.0	180	10.8					8.77	16.98	2.97	3.40	0.46	0.53	0.14	0.08		
4.0	240	14.4							4.98	5.68	0.77	0.89	0.23	0.16		
5.0	300	18.0							7.43	8.49	1.15	1.32	0.34	0.26		
6.0	360	21.6									1.60	1.83	0.48	0.39	0.09	0.11
7.0	420	25.2									2.11	2.42	0.63	0.55	0.12	0.14
8.0	480	28.8									2.68	3.07	0.80	0.72	0.16	0.18
9.0	540	32.4									3.31	3.80	0.98	0.91	0.19	0.22
10.0	600	36.0									4.00	4.59	1.19	1.13	0.23	0.27
15.0	900	54.0											2.47	1.36	0.48	0.55
20.0	1200	72.0													0.81	0.93

			Friction Loss for Rubber Ho	se (m/100 metres of hose)							
	Flow			Friction Loss (m/100 metres of hose)								
lps	lpm	m³/hr	20mm	25mm	32mm	40mm	50mm					
0.2	12	0.72	4.29	1.14	0.37	0.15						
0.5	30	1.8	22.81	5.88	1.9	0.77	0.2					
1	60	3.6		21.11	6.71	2.67	0.7					
2	120	7.2			24.37	9.56	2.47					
3	180	10.8				20.43	5.21					
4	240	14.4				35.22	8.9					
4.5	270	16.2					11.1					

POOL SELECTION GUIDE

Industry accepted standards for water quality in swimming pools recommend that filtration equipment is able to turn over the entire body of water within these time periods.

Swimming pool Domestic: Swimming pool Commercial: Spa pool Domestic: Spa pool Commercial: 6 Hours 4 Hours 1 Hour

 $1/_2$ Hour with a 1 hour filtration cycle after bathing

Actual operating time per day is dependant on debris load, number of bathers and sanitation method. Davey has made product selection easy by labelling their equipment with flow rates for average operating pressures, and converted these with domestic swimming pools turnover rates into a simple table.

To select the right equipment for your pool follow steps 1,2,3 & 4.

The formulae below requires all dimensions to be in metres. If the depth of the pool varies, \ensuremath{a} average depth should be used.
RECTANGULAR POOLS
length x width x depth x 1000 = volume in litres
ROUND POOLS
diameter x diameter x depth x 785.5 = volume in litres.

Rectangular above ground pools
4.9m x 3.7m x 1.2m (16'x 12' x 4') = 22,000 litres
6m x 3.7m x 1.2m (20' x 12' x 4') = 27,000 litres
7.3m x 3.7m x 1.2m (24' x 12' x 4') = 32,000 litres
9.8m x 3.7m x 1.2m (32' x 12' x 4') = 44,000 litres
5.8m x 4.5m x 1.2m (19' x 15' x 4') = 31,000 litres
8.2m x 4.5m x 1.2m (27' x 15' x 4') = 44,000 litres
9m x 4.5m x 1.2m (30' x 15' x 4') = 49,000 litres

Circular above ground pools 3.7m x 0.9m (12' x 3') = 10,000 litres 4.5m x 0.9m (15'x 3') = 14,000 litres 4.5m x 1.2m (15' x 4') = 19,000 litres 5.5m x 1.2m (18' x 4') = 29,000 litres 6m x 1.2m (20' x 4') = 34,000 litres 6.7m x 1.2m (22' x 4') = 42,000 litres

1. CALCULATE YOUR POOL VOLUME

Rectangular in ground pools
6m x 3.7m x 1.4m (20' x 12' x 4'6") = 31,000 litres
7.3m x 3.7m x 1.4m (24' x 12' x 4'6") = 38,000 litres
9m x 3.7m x 1.4m (30' x 12' x 4'6") = 47,000 litres
9m x 4.5m x 1.4m (30' x 15' x 4'6") = 57,000 litres
12m x 4.5m x 1.4m (40' x 15' x 4'6") = 76,000 litres
12m x 6m x 1.4m (40' x 20' x 4'6") = 101,000 litres
15m x 7.5m x 1.4m (50' x 25' x 4'6") = 158,000 litres
1.4m (4'6") = average depth

2. SELECTING THE RIGHT SIZE PUMP OR FILTER

	In Ground Swimming Pools										
Pool Volume	Power Ace® CR Pumps	Easy Clear® Cartridge Filters									
30,000 litres	PA CR 100	-	CC 120	EC 500							
45,000 litres	PA CR 150	-	CC 190	EC 750							
70,000 litres	PA CR 200	PM 200	CC 250	EC 1000							
90,000 litres	PA CR 300	PM 250	CC 330	EC 1500							
110,000 litres	PA CR 300	PM 350	CC 400	EC 1750							
160,000+ litres	-	PM 450	-	2 x EC 1500							

Note: It is possible to use larger sized cartridge filters to minimise the element cleaning required.

	In Ground Swimming Pools											
	Pool Volume	Power Ace® CR Pumps	Power Chief® CR Pumps	Crystal Clear® Sand Filters	Easy Clear® Cartridge Filters							
<	30,000 litres	PA CR 100	PC CR 100	CC 120	EC 500							
	50,000 litres	PA CR 150	PC CR 150	CC 190	EC 750							

POOL SELECTION GUIDE

3. SELECTING THE RIGHT FILTER TYPE

	Sand	Filter	
	Sand	Zelbrite	Cartridge Filter
Filtration Clarity	Good Excellent		Very Good
Smallest Particle Removal (micron)	15-20	3-5	5-10
Media Type	Granular media which is	re-used for several years.	Mesh element which is regularly cleaned & replaced after 3-5yrs.
Cleaning Method	Backwash-Reverse flow of wate	r through filter to flush out dirt.	Remove element and hose down. Acid wash once a year.
Loss of Pool Water	Yes, due to b	backwashing.	No, as backwashing not required.
Ease of Operation	Very simple as the media is r Recharge Zelbri	iot handled and is re-useable. te® once a year.	Requires more attention as the element should be removed and cleaned often.
Operating Cost	Low, as media is virtually perm	nanent. Replace every 5 years.	High, as elements are relatively expensive to replace.
Initial Cost	Mec	lium	Low

4. Selecting the Right Size Chlorinator

The appropriate chlorinator size for your pool is dependent on the local climate and the amount of use the pool gets. Note that chlorinator cell life can be increased with shorter running times during winter and lower output settings. Davey recommends that a chlorinator is run for between 6-8 hours a day during summer and between 2-4 hours during winter. A 24 hour super-chlorination after heavy use is also a good idea.

Maximum Pool Volume for Chlorinators									
Model	Chlorine Gas Production per hour	Calcium Hypochlorite Equivalent per hour	Maximum Pool Size (litres) Cool Climate Temperate Hot / Tropical						
D24T	24gm	37gm	144,000	96,000	72,000				
D30T	30gm	46gm	180,000	120,000	90,000				
D40T	40gm	62gm	240,000	160,000	120,000				
Minimum Run Time		Summer	6 hrs	7 hrs	8 hrs				
		Winter	2 hrs	3 hrs	4 hrs				

Correct water chemistry is important for the life of your equipment and your enjoyment of the pool, so be sure to have your water chemistry checked regularly by your local pool shop.

AQUACULTURE & **POOL PUMPS**

Power Master®

Power Ace® CR

Power Chief® CR

Aquaculture Pumps

Built from corrosion resistant materials and engineered to give high water turnover rates, Davey pumps and filters are ideal for marine and freshwater aquaculture.

Power Master[®] Pumps

Davey's premium range - robust and powerful, featuring Davey's own manufactured TEFC motor with safe IP56 rating, massive front mounted fan for superior cooling and high performance C3 bearings. The range features carbon ceramic seals and stainless steel shafts, ideal for salt water applications.

Power Ace[®] CR Pumps

Compact, powerful and efficient, Davey's Power Ace CR range features carbon ceramic seals, stainless steel shafts and Davey manufactured IP55 TEFC motors. An additional fan between the pump & motor keeps bearings cool for long life and protects vital motor components from moist air. Not suitable for seawater.

Power Chief® CR Pumps

Compact, powerful and efficient, Davey's Power Chief CR range features are identical to the Power Ace® CR range. They are ideal for solar hot water boosters.

	Input	Output	Maximum Total Head (metres)					Inlet / Outlet
Pump Model	odel (w)		Pressure (m)	5	10	15	20	(mm)
				Pum	p Flow (litr	es per mir	ute)	
Power Master 200	1280	900	18	280	230	130	-	40 & 50 / 40 & 50
Power Master 250	1430	1050	19.5	380	310	200	-	40 & 50 / 40 & 50
Power Master 350	1670	1200	20	460	375	260	50	40 & 50 / 40 & 50
Power Master 450	2250	1700	22.5	60	480	370	190	50 / 50
Power Master 4503	2040	1750	22.5	560	480	370	190	50 / 50

		Input	Output	Maximum	laximum			Total Head (metres)				
	Pump Model	(w)	(w)	Pressure (m)	4	6	8	10	12	14	(mm)	
						Pump Fl	ow (litre	es per n	ninute)			
	Power Ace CR100	760	530	16	215	190	165	140	105	60	40&50/40&50	
l	Power Ace CR150	1000	720	17	280	260	230	200	160	110	40&50/40&50	
	Power Ace CR200	1060	790	19	315	295	265	235	200	160	40&50/40&50	
	Power Ace CR300	1500	1170	20	385	365	340	305	260	220	40&50/40&50	
1	Power Chief CR100	760	530	16	215	190	165	140	105	60	40&50/40&50	
	Power Chief CR150	1000	720	17	280	260	230	200	160	110	40&50/40&50	

 Power Master*

 PM350

 PM20

 PM20

TOTAL HEAD (m)

POOL PUMPS

Magnum Pool Pumps

The Magnum range of pool pumps gives you strong pumping performance and quiet operation in a compact, convenient to install package.

Magnum Booster Pool Pumps

The Magnum Boosters are specifically designed to circulate swimming pool water for filtration and solar heating applications. They are ideal for above ground pools, water features and spa pools.

Monster High Head Pool Pumps

The Monster range is specifically designed to circulate swimming pool water for filtration and solar heating applications. They are ideal for automatic cleaners and heating systems.

Standard Valves

Two and three port full flow valves specially designed for use in the swimming pool and irrigation industries. They are non corrosive, made from injection moulded ABS to fit either 40mm or 50mm PVC pressure pipe. The handle is spring loaded and locks in position to ensure a positive no creep setting.

Teflon Valves

40 and 50mm full flow valves are available with 'no lube' Teflon seals - to ensure easy free rotation of the handle over the life of the valve. You can identify the Teflon seal version by the red handle, black lid and sticker.

Check Valves

A genuine full flow 40mm check valve with a see-through lid that is easily removed for servicing without disturbing the plumbing.

Every valve is pressure tested and guaranteed against manufacturing defects.

Magnum Pool Pump

Magnum Booster Pool Pump

Standard Valves

Teflon Valves

FILTRATION

Crystal Clear® Filters

Tough, sea-water resistant polyethylene filter tank with Davey's unique T-shaped laterals for high efficiency filtration and easy back-washing.

Easy Clear[®] Cartridge Filters

Depend on Davey Easy Clear[®] cartridge filters for the ideal choice for the filtration of spas, swim spas, hot tubs and swimming pools.

Featuring a reinforced polyester element designed to maximise filtration area, Davey Easy Clear[®] filters ensure you'll always have sparkling clear water. When the filter element needs cleaning, simply take it out, hose it down and you're back in business within minutes. You can depend on years of service out of your Davey Easy Clear[®] filter as only the best in corrosion and U.V. resistant materials are used.

Zelbrite® Filter Media

More surface area than sand for finer filtration. Has ability to capture ammonium ions in fresh water for extra purity and healthier water.

Salt Water Chlorinators

Special Features

- World leading sanitisation technology
- Constructed of strong corrosion and U.V. resistant materials for long and reliable working life
- Easy to remove salt cell
- Complies with electrical standards for safe installation in the pool zone
- A.B.S. Quick connect couplings make installation simple
- Every unit is pressure and performance tested in factory to ensure quality and reliability
- Time clock included as standard for automatic operation of the filtration system
- Advanced self cleaning cell for low maintenance
- Super chlorinate function
- Huge digital display and touch pad controls for easy programming
- Automatic self cleaning cell reduces maintenance and extends cell life

Easy Clear 1000

Easy Clear 1500

OPERATING PERFORMANCE & MEDIA REQUIRED

Model	Sand Required (kg)	Zelb Requ (kg	rite iired g)	Max Flow Rate (Ipm)	Min Backwash Flow Rate	6 F Turr (lit	lour iover res)	Filtration Area (sq metres)
Crystal Clear 120	60	4	5	120	100	43,	200	0.166
Crystal Clear 190	90	6	0	180	135	64,	800	0.223
Crystal Clear 250	140	105 150		240	180	86,	400	0.292
Crystal Clear 330	200			330	240	116	,000	0.397
Crystal Clear 400	280	21	0	400	300	144	,000	0.507
Model	Maximum Flow	/ Rate	Filter	6 Hour Turnover	Matching Davey	r Pump	Inlet ,	/ Outlet (mm)
Easy Clear 500	205 I/mir	ı	7	3,800 litres	PACR100		40 / 40	
Easy Clear 750	270 I/mir	270 I/min		7,200 litres	PACR150		40 / 40	

122,400 litres

162.000 litres

Zelbrite® Filter Media

OPERATING LIMITS

40 / 40

40&50 / 40&50

PACR200 / PM 200

PACR300 / PM 250

340 I/min

450 I/min

SPA BATH PUMPS

Quiet: 50% quieter than other pumps which provides a more enjoyable spa experience that will not disturb your well deserved relaxation.

Powerful: With pumps as large as 2 horsepower, and three unique patented features Celsior® pumps deliver greater water flow and pressure, enlivening your spa for a complete massaging effect.

Smart: Davey Heat Recovery technology maintains the temperature of your spa for longer by utilising waste energy which is otherwise lost when using traditional style spa pumps. Environmentally friendly & highly efficient with up to 97% effective energy usage. Lower running costs that delivers savings of up to 15% over older style spa bath pumps.

Easy: Quick and easy to install using the Davey Flexibrax. IP56 protective enclosures make Celsior® ideal for outdoor installation without the need for expensive covers. Designed to exceed standards for electrical safety and hygiene for your peace of mind.

TOTAL HEAD (m)

OPERATING LIMITS

Maximum Water Temperature*:	50°C
Maximum Ambient Temperature*:	55℃
Sound Power Levels:	60 dE

Davey Products Pty Ltd

Member of the GUD Holdings Ltd Group ABN 18 066 327 517

Head Office and Manufacturing 6 Lakeview Drive, Scoresby, Australia 3179

Interstate Offices Sydney • Brisbane • Adelaide • Perth • Townsville

International

6 Lakeview Drive, Scoresby, Australia 3179 Ph: +61 3 9730 9121 Fax: +61 3 9753 4248 E-mail: export@davey.com.au

Germany

Kantstrasse 47, 04275 Leipzig Ph: +49 341 301 0412 Fax: +49 341 301 0413 E-mail: akrenz@daveyeurope.com

New Zealand

2 Rothwell Avenue North Harbour, Auckland 1330 Ph: +64 9 914 3680 Fax: +64 9 914 3685 Website: www.daveynz.co.nz E-mail: sales@daveynz.co.nz

U.S.A.

 Davey Pumps Inc.

 1005 N. Commons Drive

 Aurora, Illinois 60504

 Ph:
 +1 630 898 6976

 Fax:
 +1 630 851 7744

 Website:
 www.daveyusa.com

 E-mail:
 sales@daveyusa.com

e

Visit Davey on-line for further information. WWW.davey.com.au

Available from:

NOTE: This is not a complete guide to product usage or guarantee conditions. Further information is available from your Davey Dealer, and from the relevant product Installation and Operating Instructions.

Information & specifications subject to change without notice.

© Davey Products Pty Ltd

- Bavey, Celsior, Crystal Clear, Dynaflo, Dynajet, Easy Clear, Firefighter, Hydrascan, ISOspec, Phangle, Power Ace, Power Chief, Power Master, RainBank, Thermotection and Torrium are registered trademarks of Davey Products Pty Ltd.
- SpaQuip and Spa Power are registered trademarks of SpaQuip New Zealand.
 Electrophitz Filterpure Insectabilitz Microclene Microquard Microlene Odourbl

Electroblitz, Filterpure, Insectablitz, Microclene, Microguard, Microlene, Odourblitz, Steriblitz, Steriflo, Sterizone and Water Saver are registered trademarks of Contamination Control Technologies Ltd.

DEPEND ON

WATER PRODUCTS